Basit öğe kaydını göster

dc.contributor.authorÖzkaya, Umut
dc.contributor.authorÖztürk, Şaban
dc.date.accessioned2025-03-28T07:12:04Z
dc.date.available2025-03-28T07:12:04Z
dc.date.issued2020
dc.identifier.issn2458-7575
dc.identifier.urihttps://hdl.handle.net/20.500.12450/5048
dc.description.abstractToday, solar energy has become an indispensable element in providing energy infrastructure. Estimating the solar energy potential of building roofs in residential areas is important for the effective use of this energy. Nowadays, thanks to the developments in artificial intelligence algorithms, these tasks are performed automatically by computers. In this study, a solution is proposed by using deep learning architectures, which are the most advanced artificial intelligence algorithms. Convolutional Neural Network model called Roof-KSA with less parameters was proposed for semantic segmentation of building roofs in this research. A total of 3400 satellite images in 224×224×3 pixels size were used for semantic segmentation. Roof-CNN model has a total of 10 layers and 104,450 updated parameters. Within the scope of comparative analysis, Roof-CNN model has less parameters compared to U-Net models. In addition, Roof-KSA model stands out with 0.91404 global accuracy, 0.73092 mean accuracy, 0.65537 mean intersection over union, 0.84918 weighted intersection over union and 0.67244 mean BF score. As a result, it is seen that Roof-CNN model is more successful in accordance with obtained semantic segmentation results.
dc.description.abstractGünümüzde güneş enerjisi, enerji alt yapısının sağlanmasında vazgeçilmez bir unsur haline gelmiştir. Yerleşim yerlerinde bulunan bina çatılarının güneş enerjisi potansiyelinin tahmin edilebilmesi bu enerjinin etkin kullanılabilmesi için önemlidir. Günümüzde yapay zeka algoritmalarındaki gelişmeler sayesinde bu gibi işler bilgisayarlar tarafından otomatik olarak gerçekleştirilmektedir. Bu çalışmada ise yapay zeka algoritmalarının en gelişmişi olan derin öğrenme mimarilerinden faydalanarak bir çözüm önerilmektedir. Bu çalışmada bina çatılarının semantik bölütlenmesi için az parametreye sahip Roof-KSA adı verilen Konvolüsyonel Sinir Ağı modeli önerilmiştir. Semantik bölütleme işlemi için toplamda 3400 adet 224×224×3 piksel boyutlarında uydu görüntülerinden yararlanılmıştır. Roof-KSA modeli toplam 10 katmana ve 104,450 adet güncellenebilen parametreye sahiptir. Karşılaştırmalı analiz kapsamında Roof-KSA modeli kullanılan U-Net modellerine göre oldukça az parametreye sahiptir. Ayrıca Roof-KSA modeli 0.91404 küresel doğruluk oranı, 0.73092 ortalama doğruluk oranı, 0.65537 ortalama eşleşmiş bölge oranı, 0.84918 ağırlıklandırılmış eşleşmiş bölge oranı ve 0.67244 ortalama BF skoru ile ön plana çıkmaktadır. Elde edilen semantik bölütleme sonuçları dikkate alındığında Roof-KSA modelinin oldukça başarılı olduğu görülmektedir.
dc.language.isoturen_US
dc.publisherBilecik Şeyh Edebali Üniversitesi
dc.relation.ispartofBilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSolar Energyen_US
dc.subjectDeep Learningen_US
dc.subjectSemantic Segmentationen_US
dc.subjectConvolutional Neural Networksen_US
dc.titleRoof-CNN: Convolutional Neural Network Model with Less Parameters for Semantic Segmentation of Buildingsen_US
dc.title.alternativeRoof-KSA: Binaların Semantik Bölütlemesi İçin Az Parametreye Sahip Konvolüsyonel Sinir Ağı Modelien_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume7en_US
dc.identifier.issue2en_US
dc.identifier.startpage1094en_US
dc.identifier.endpage1105en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.35193/bseufbd.741729
dc.identifier.doihttps://doi.org/10.35193/bseufbd.741729
dc.department-tempKONYA TEKNİK UNİVERSİTESIİ, 0000-0002-9244-0024, Türkiye -- AMASYA ÜNİVERSİTESİ, 0000-0003-2371-8173, Türkiyeen_US
dc.snmzKA_DergiPark_20250327


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster