• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cell-type based semantic segmentation of histopathological images using deep convolutional neural networks

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2019

Yazar

Öztürk Ş.
Akdemir B.

Üst veri

Tüm öğe kaydını göster

Özet

Histopathological whole-slide image (WSI) analysis is still one of the most important ways to identify regions of cancer risk. For cancer in which early diagnosis is vital, pathologists are at the center of the decision-making process. Thanks to the widespread use of digital pathology and the development of artificial intelligence methods, automatic histopathological image analysis methods help pathologists in their decision-making process. In this process, rather than producing labels for whole-slide image patches, semantic segmentation is very useful, which facilitates the pathologists’ interpretation. In this study, automatic semantic segmentation based on cell type is proposed for the first time in the literature using novel deep convolutional networks structure (DCNN). We presents semantic information on four classes, including white areas in the whole-slide image, tissue without cells, tissue with normal cells and tissue with cancerous cells. This visual information presented to the pathologist is an easy-to-understand picture of the status of the cells and their implications for the spread of cancerous cells. A new DCNN architecture is created, inspired by the residual network and deconvolution network architecture. Our network is trained end-to-end manner with histopathological image patches for cell structures to be more discriminative. The proposed method not only produces more successful results than other state-of-art semantic segmentation algorithms with 9.2% training error and 88.89% F-score for test, but also has the most important advantage in that it has the ability to generate automatic information about the cancer and also provides information that pathologists can quickly interpret. © 2019 Wiley Periodicals, Inc.

Kaynak

International Journal of Imaging Systems and Technology

Cilt

29

Sayı

3

Bağlantı

https://dx.doi.org/10.1002/ima.22309
https://hdl.handle.net/20.500.12450/503

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: