Basit öğe kaydını göster

dc.contributor.authorAltürk, Ahmet
dc.date.accessioned2025-03-28T07:08:03Z
dc.date.available2025-03-28T07:08:03Z
dc.date.issued2024
dc.identifier.issn1304-7981
dc.identifier.urihttps://hdl.handle.net/20.500.12450/4611
dc.description.abstractIn this paper, we study a weakly singular Volterra integral equation of the second kind with the kernel $\displaystyle K(x,t) = \left (\frac{t}{x}\right )^\nu\frac{1}{t}$, for some $\nu >0$ and $x\in
dc.description.abstractThe powerful homotopy perturbation method (HPM) is initially applied to find a solution to the integral equation for $\nu > 1$. We then consider the interesting case where $0< \nu < 1$. Applying the homotopy perturbation method constructed by a convex homotopy or other series-related methods produces unwanted results for this case. In this study, we propose conditions to be imposed to overcome this issue. In addition, for completeness, we investigate all cases where $\nu\in \mathbb{R}$. Some numerical examples are provided to confirm the simplicity and applicability of the applied methods.
dc.language.isoengen_US
dc.publisherTokat Gaziosmanpaşa Üniversitesi
dc.relation.ispartofJournal of New Results in Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVolterra integral equationsen_US
dc.subjectHomotopy perturbation methoden_US
dc.subjectWeakly singular kernelen_US
dc.subjectPerturbationen_US
dc.titleApplication of the homotopy perturbation method for weakly singular Volterra integral equationsen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume13en_US
dc.identifier.issue3en_US
dc.identifier.startpage201en_US
dc.identifier.endpage213en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorAltürk, Ahmet
dc.identifier.doi10.54187/jnrs.1560535
dc.identifier.doihttps://doi.org/10.54187/jnrs.1560535
dc.department-tempAMASYA UNIVERSITY, 0000-0002-5220-0608, Türkiyeen_US
dc.snmzKA_DergiPark_20250327


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster