• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis, spectral characterization and biological activities of o,o'-dihydroxyazo compounds containing gallic acid: Molecular docking and dynamics simulation and MM-PBSA studies

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2024

Author

Demir, Ersin
Kocaokutgen, Hasan
Yenigun, Semiha
Ozen, Tevfik

Metadata

Show full item record

Abstract

In the investigation, diazonium derivatives of 2-aminophenol, 2-amino-4-methylphenol, 2-amino-4-chlorophenol, and 2-amino-5-nitrophenol reacted with gallic acid to produce four distinct o,o'-dihydroxyazo compounds. Description of the o,o'-dihydroxyazo compounds that were produced identified the substituent spectrum data using UV–Vis, FT-IR, NMR spectroscopy and MS spectrometry methods. The UV–Vis behaviors of compounds in ethanol and DMSO were noted at various pH values. The antioxidant, antimicrobial, and urease inhibitory activities of the compounds were determined spectrophotometrically and compared to standard compounds. The DPPH˙ scavenging and metal chelating activities of compound 4b were 2.17 ± 0.04 and 11.62 ± 0.64 μg/mL, respectively. Compounds exhibited an effective antibacterial activity against B. cereus. The urease inhibition capacity of compound 4c (IC50: 4.79 ± 0.01 μg/mL) was more effective than thiourea (IC50: 20.04 ± 0.16 μg/mL). Moreover, molecular docking calculations were used to assess the urease inhibition potentials, inhibition kinetics, and interactions of the synthesized compounds with antimicrobial enzymes and urease. The compounds had substantial impacts on density functional theory (DFT), molecular electrostatic potential (MEP), inhibition kinetics, enzyme inhibition, and PASS prediction tests. For this reason, molecular dynamics simulation and MM-PBSA energy calculation were performed to assess the compounds' stability during urease binding. As a result, the effective pharmacological properties of the newly synthesized o,o'-dihydroxyazo compounds were revealed by different in vitro bioactivity tests and in silico calculations. © 2024 Indian Chemical Society

Volume

101

Issue

11

URI

https://hdl.handle.net/20.500.12450/4376

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: