Basit öğe kaydını göster

dc.contributor.authorÜnal, Yavuz
dc.contributor.authorTürkoğlu, Muammer
dc.date.accessioned2025-03-28T07:05:12Z
dc.date.available2025-03-28T07:05:12Z
dc.date.issued2025
dc.identifier.issn21483736
dc.identifier.urihttps://hdl.handle.net/20.500.12450/4325
dc.description.abstractPlant diseases pose a significant threat to the quality and quantity of agricultural production, with leaf diseases being particularly detrimental to plant growth and yield. In the near future, ensuring access to affordable and safe food will become one of the most pressing global challenges. As a result, the early detection of plant diseases is crucial for both economic stability and food security. Detecting and monitoring diseases in mango leaves, however, is a complex task when relying solely on visual inspection. This study seeks to address this challenge by utilizing image processing and deep learning techniques to detect mango leaf diseases. We extracted deep features from mango leaf images using several prominent architectures, including Darknet19, Xception, SqueezeNet, MobileNetv2, DenseNet201, GoogLeNet, ResNet18, VGG16, and AlexNet. These features were then classified using machine learning algorithms such as decision tree, linear discriminant analysis, naive Bayes, support vector machine, k-nearest neighbors, and ensemble classifiers. Our findings demonstrate an improvement over existing results in the literature, with detailed experimental results presented within the article. © 2025, TUBITAK. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherTUBITAKen_US
dc.relation.ispartofEl-Cezeri Journal of Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Feature Extractionen_US
dc.subjectDeep Learningen_US
dc.subjectMango Leaf Diseaseen_US
dc.subjectTransfer Learningen_US
dc.titleMango Leaf Disease Detection Using Deep Feature Extraction and Machine Learning Methods: A Comparative Surveyen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume12en_US
dc.identifier.issue1en_US
dc.identifier.startpage35en_US
dc.identifier.endpage43en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85217495923en_US
dc.identifier.doi10.31202/ecjse.1420624
dc.department-tempÜnal Y., Computer Enginerring Department, Amasya University, Amasya, Türkiye; Türkoğlu M., Software Engineering Department, Faculty of Engineering and Natural Science, Samsun University, Samsun, Türkiyeen_US
dc.snmzKA_Scopus_20250328
dc.indekslendigikaynakScopusen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster