• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detecting Wheat Leaf Diseases: A Deep Feature-Based Approach with Machine Learning Classification

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/openAccess

Date

2024

Author

Unal, Yavuz
Bolat, Muzaffer

Metadata

Show full item record

Abstract

Wheat is a rich storehouse of nutrients with many different vitamins and minerals. Wheat is one of the main cereals that meet the nutritional needs of humans and other living things and is used in the production of other foods. It can be grown in almost all regions of the world. It requires less irrigation compared to other plants. One of the most important problems in wheat cultivation is the fight against diseases. Wheat diseases cause yield losses and quality decreases as in other agricultural products. Timely and accurate diagnosis of these diseases; It is clear that it will lead to an increase in yield and quality. Detection of these diseases with the naked eye can be difficult and laborious. In this study, diseases on wheat leaves were detected using image processing techniques. The features of septoria and stripe rust diseases on wheat leaves were extracted using pre-trained networks VGG-16, VGG-19 and then classified with machine learning algorithms support vector machines (SVM), multi-layer perceptron (MLP), k-nearest neighbor (KNN). The results obtained were evaluated with performance criteria such as accuracy, sensitivity, specificity, precision and F1-Score. In the analysis, the features extracted with VGG-19 were classified with SVM method and the highest classification accuracy of 98.63% was achieved.

Volume

38

Issue

3

URI

https://doi.org/10.15316/SJAFS.2024.041
https://search.trdizin.gov.tr/tr/yayin/detay/1286272
https://hdl.handle.net/20.500.12450/4258

Collections

  • TR-Dizin İndeksli Yayınlar Koleksiyonu [1323]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: