Basit öğe kaydını göster

dc.contributor.authorAydemir, Salih Berkan
dc.contributor.authorOnay, Funda Kutlu
dc.date.accessioned2025-03-28T06:52:24Z
dc.date.available2025-03-28T06:52:24Z
dc.date.issued2023
dc.identifier.issn2148-2446
dc.identifier.urihttps://doi.org/10.29130/dubited.999953
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1256787
dc.identifier.urihttps://hdl.handle.net/20.500.12450/4175
dc.description.abstractVarious pandemics have been recorded in world history until today. The Covid-19 outbreak, which emerged at the end of 2019, has recently been a hot topic in the literature. In this work, extreme learning algorithms are presented as a comparative study for predicting the positive rate for the countries: India, Turkey, Italy, USA and UK. The features to be used in the learning phase are determined with the F-test feature selection method. For each extreme learning approach, results are obtained for each country with the root mean square error evaluation criteria. Accordingly, the radial basis kernel function produces the best estimation results, while the linear kernel function has the highest RMSE. Accordingly, the lowest RMSE value has been obtained for India as 4.17E-03 with the radial basis kernel function based ELM. Also, since Turkey's data contains too many outliers, it has the highest RMSE value (0.015 - 0.035) in linear kernel method among the countries.en_US
dc.language.isoengen_US
dc.relation.ispartofDüzce Üniversitesi Bilim ve Teknoloji Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTıbbi İnformatiken_US
dc.subjectHalk ve Çevre Sağlığıen_US
dc.subjectİstatistik ve Olasılıken_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectYapay Zekaen_US
dc.titleExtreme Learning Machine Algorithms for Prediction of Positive Rate in Covid-19: A Comparative Studyen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume11en_US
dc.identifier.issue1en_US
dc.identifier.startpage170en_US
dc.identifier.endpage188en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1256787en_US
dc.identifier.doi10.29130/dubited.999953
dc.department-tempAmasya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Amasya, Türkiye -- Amasya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Amasya, Türkiyeen_US
dc.snmzKA_TR_20250328
dc.indekslendigikaynakTR-Dizinen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster