Basit öğe kaydını göster

dc.contributor.authorUnal, Yavuz
dc.contributor.authorBolat, Muzaffer
dc.contributor.authorDudak, Muhammet Nuri
dc.date.accessioned2025-03-28T06:52:23Z
dc.date.available2025-03-28T06:52:23Z
dc.date.issued2024
dc.identifier.issn2548-0391
dc.identifier.urihttps://doi.org/10.30931/jetas.1432261
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1265661
dc.identifier.urihttps://hdl.handle.net/20.500.12450/4161
dc.description.abstractVehicles are important inventions that greatly improve various aspects of human life and find use in almost every field. Once tools are introduced to human existence, they enable time-saving and tasks that are complex or cannot be accomplished by human power. It can be used in situations such as classification of vehicles and tracking of escaped drivers. Tracking the vehicles with the help of brand and model will provide distinctive information to traffic officers. In addition, vehicles of different sizes and functions in traffic can be directed to different lanes. This study examines the use of a YOLOv8 (You Only Look Once version 8) based deep learning model and evaluates its performance for vehicle brand and model classification. YOLOv8 is known as an effective method in the field of object detection and is used in this study to classify the make and model of vehicles. In the classification, 94.3% classification accuracy was achieved.en_US
dc.language.isoengen_US
dc.relation.ispartofJournal of Engineering Technology and Applied Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learningen_US
dc.subjectclassificationen_US
dc.subjectYOLOv8en_US
dc.subjectVehicle make and model recognitionen_US
dc.titleExamining the Performance of a Deep Learning Model Utilizing Yolov8 for Vehicle Make and Model Classificationen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume9en_US
dc.identifier.issue2en_US
dc.identifier.startpage131en_US
dc.identifier.endpage143en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1265661en_US
dc.identifier.doi10.30931/jetas.1432261
dc.department-tempAmasya Üniversitesi, Mühendislik Fakültesi, Amasya, Türkiye -- Amasya Üniversitesi, Fen Bilimleri Enstitüsü, Amasya, Türkiye -- Amasya Üniversitesi, Bilişim Bölümü, Amasya, Türkiyeen_US
dc.snmzKA_TR_20250328
dc.indekslendigikaynakTR-Dizinen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster