Basit öğe kaydını göster

dc.contributor.authorSarı, Ramazan
dc.date.accessioned2024-03-12T19:38:59Z
dc.date.available2024-03-12T19:38:59Z
dc.date.issued2021
dc.identifier.issn1694-7398
dc.identifier.urihttps://doi.org/10.51354/mjen.803396
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/488755
dc.identifier.urihttps://hdl.handle.net/20.500.12450/3376
dc.description.abstractIn this paper, we study de Rham cohomology class for semi-invariant submanifolds of a cosymplectic manifold. We show that there are de Rham cohomolgy class on semi-invariant submanifold of a cosymplectic manifold. Firstly, we define semi-invariant submanifolds of a cosyplectic manifold. We present an example for semi-invariant submanifold of a cosymplectic manifold.Later, We obtain characterizations, investigate the geometry of distributions which arise from the definition of semi-invariant submanifold. We obtain that invariant distribtion is always integrable and minimal. Moreover, necessary and sufficient conditions investigate for the anti-invariant distribution to be integrable and minimal. Finally, we prove that semiinvariant submanifold of a cosymplectic manifold has nontrivial de Rham cohomology class. Further, the theoretical methodology of mathematics are used to obtain results.en_US
dc.language.isoengen_US
dc.relation.ispartofManas Journal of Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleCohomology of semi-invariant submanifolds of cosymplectic manifoldsen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume9en_US
dc.identifier.issue1en_US
dc.identifier.startpage10en_US
dc.identifier.endpage14en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid488755en_US
dc.identifier.doi10.51354/mjen.803396
dc.department-tempAmasya Üniversitesi, Gümüşhaciköy Hasan Duman Meslek Yüksek Okulu, Amasya, Türkiyeen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster