Basit öğe kaydını göster

dc.contributor.authorTerzi R.
dc.contributor.authorAzginoglu N.
dc.date.accessioned2024-03-12T19:35:26Z
dc.date.available2024-03-12T19:35:26Z
dc.date.issued2021
dc.identifier.isbn9781665436038
dc.identifier.urihttps://doi.org/10.1109/INISTA52262.2021.9548623
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2909
dc.descriptionKocaeli University;Kocaeli University Technoparken_US
dc.description2021 International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2021 -- 25 August 2021 through 27 August 2021 -- -- 172175en_US
dc.description.abstractMedical object detection is one of the important methods used in the detection and diagnosis of diseases. In this study, a solution was sought for a bias problem that was not noticed in the testing environment from object detection-based brain MRI studies but appeared in real life. While in the classical data processing pipeline, deep learning model training and testing are performed with only tumor data, a new pipeline in which both tumor and brain parts are labeled is proposed in this study. A state-of-the-art object detection model Mask RCNN was chosen as the deep learning model. According to the results obtained using the BraTS 2020 dataset, in the classical data processing method, specificity value and F1 Score were 0.60 and 0.80, respectively, while the proposed approach measured as 0.94 for both. So the proposed pipeline plays an essential role in reducing false positives, which we frequently encounter in real-life implementations. © 2021 IEEE.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2021 International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2021 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiasen_US
dc.subjectBrain MRIen_US
dc.subjectDeep learningen_US
dc.subjectMedical object detectionen_US
dc.subjectData handlingen_US
dc.subjectDeep learningen_US
dc.subjectDiagnosisen_US
dc.subjectMedical imagingen_US
dc.subjectObject detectionen_US
dc.subjectObject recognitionen_US
dc.subjectPipelinesen_US
dc.subjectTumorsen_US
dc.subjectBiasen_US
dc.subjectBias problemsen_US
dc.subjectBias reductionen_US
dc.subjectBrain MRIen_US
dc.subjectDeep learningen_US
dc.subjectDetection and diagnosisen_US
dc.subjectDiagnoses of diseaseen_US
dc.subjectLearning modelsen_US
dc.subjectMedical object detectionen_US
dc.subjectTesting environmenten_US
dc.subjectMagnetic resonance imagingen_US
dc.titleA novel pipeline on medical object detection for bias reduction: Preliminary study for brain MRIen_US
dc.typeconferenceObjecten_US
dc.departmentAmasya Üniversitesien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85116622056en_US
dc.identifier.doi10.1109/INISTA52262.2021.9548623
dc.department-tempTerzi, R., Amasya University, Dept. of Computer Engineering, Amasya, Turkey; Azginoglu, N., Kayseri University, Dept. of Computer Engineering, Kayseri, Turkeyen_US
dc.authorscopusid55364583000
dc.authorscopusid55364407100


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster