Basit öğe kaydını göster

dc.contributor.authorÜnal Y.
dc.contributor.authorÖztürk Ş.
dc.contributor.authorDudak M.N.
dc.contributor.authorEkici M.
dc.date.accessioned2024-03-12T19:35:09Z
dc.date.available2024-03-12T19:35:09Z
dc.date.issued2022
dc.identifier.isbn9783030853648
dc.identifier.issn23673370
dc.identifier.urihttps://doi.org/10.1007/978-3-030-85365-5_14
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2839
dc.description2nd International Conference on Deep Learning, Artificial Intelligence and Robotics, ICDLAIR 2020 -- 7 December 2020 through 18 December 2020 -- -- 270769en_US
dc.description.abstractDeep learning algorithms, one of the most popular topics of recent years, are frequently encountered in many areas. One of these areas is traffic. Many applications such as vehicle identification and damage detection using images obtained by various imaging methods in traffic are successfully carried out by deep learning algorithms. In this study, damaged and undamaged car images are detected using current convolutional neural network architectures. In this study, the publicly published data set named damaged car dataset (DCD)-2 was used. This data set includes 80 normal and 80 accident vehicle images. The low number of images in the preliminary analyzes made it cause us to increase the data (image augmentation). With the increase in data, the number of images was increased to 400 damaged vehicles and 400 solid vehicles. VGG-16, VGG-19, Inception V3, NasNetLarge, DenseNet201 were applied from the transfer learning algorithm to the data incremented dataset. At the end of the application, the classification accuracy was 84.11% with VGG-16, 81.96% with VGG-19, 94.11% with Inceptionv3, 98.39% with NasnetLarge and 97.14% with Densenet201. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Networks and Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCar crashen_US
dc.subjectDeep learningen_US
dc.subjectTransfer learningen_US
dc.titleComparison of Current Convolutional Neural Network Architectures for Classification of Damaged and Undamaged Carsen_US
dc.typeconferenceObjecten_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume249en_US
dc.identifier.startpage141en_US
dc.identifier.endpage149en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85123274434en_US
dc.identifier.doi10.1007/978-3-030-85365-5_14
dc.department-tempÜnal, Y., Amasya University, Amasya, Turkey; Öztürk, Ş., Amasya University, Amasya, Turkey; Dudak, M.N., Amasya University, Amasya, Turkey; Ekici, M., Amasya University, Amasya, Turkeyen_US
dc.authorscopusid46061541800
dc.authorscopusid57191953654
dc.authorscopusid57422944900
dc.authorscopusid57422053800


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster