Basit öğe kaydını göster

dc.contributor.authorOzturk, Saban
dc.contributor.authorCukur, Tolga
dc.date.accessioned2024-03-12T19:34:58Z
dc.date.available2024-03-12T19:34:58Z
dc.date.issued2023
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.urihttps://doi.org/10.55730/1300-0632.4031
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1208560
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2779
dc.description.abstractSegmentation of lung regions is of key importance for the automatic analysis of Chest X-Ray (CXR) images, which have a vital role in the detection of various pulmonary diseases. Precise identification of lung regions is the basic prerequisite for disease diagnosis , treatment planning. However, achieving precise lung segmentation poses significant challenges due to factors such as variations in anatomical shape and size, the presence of strong edges at the rib cage and clavicle , overlapping anatomical structures resulting from diverse diseases. Although commonly considered as the de-facto standard in medical image segmentation, the convolutional UNet architecture and its variants fall short in addressing these challenges, primarily due to the limited ability to model long-range dependencies between image features. While vision transformers equipped with self-attention mechanisms excel at capturing long-range relationships, either a coarse-grained global self-attention or a fine-grained local self-attention is typically adopted for segmentation tasks on high-resolution images to alleviate quadratic computational cost at the expense of performance loss. This paper introduces a focal modulation UNet model (FMN-UNet) to enhance segmentation performance by effectively aggregating fine-grained local and coarse-grained global relations at a reasonable computational cost. FMN-UNet first encodes CXR images via a convolutional encoder to suppress background regions and extract latent feature maps at a relatively modest resolution. FMN-UNet then leverages global and local attention mechanisms to model contextual relationships across the images. These contextual feature maps are convolutionally decoded to produce segmentation masks. The segmentation performance of FMN-UNet is compared against state-of-the-art methods on three public CXR datasets (JSRT, Montgomery, and Shenzhen). Experiments in each dataset demonstrate the superior performance of FMN-UNet against baselines.en_US
dc.description.sponsorshipTUBITAK grant [118C543]en_US
dc.description.sponsorshipThis work was supported by a TUBITAK 118C543 grant awarded to S.Ozturk. S.O.: Conceptualization, methodology, data curation, software, formal analysis, visualization, investigation, validation, writing - original draft. T.C.: Conceptualization, methodology, supervision, writing - original draft.en_US
dc.language.isoengen_US
dc.publisherTubitak Scientific & Technological Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal Of Electrical Engineering And Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFocal modulationen_US
dc.subjectlung segmentationen_US
dc.subjectchest x-rayen_US
dc.subjecttransformeren_US
dc.subjectattentionen_US
dc.titleFocal modulation network for lung segmentation in chest X-ray imagesen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume31en_US
dc.identifier.issue6en_US
dc.identifier.startpage1006en_US
dc.identifier.endpage1020en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85177487884en_US
dc.identifier.trdizinid1208560en_US
dc.identifier.doi10.55730/1300-0632.4031
dc.department-temp[Ozturk, Saban] Amasya Univ, Fac Engn, Dept Elect & Elect Engn, Amasya, Turkiye; [Ozturk, Saban; Cukur, Tolga] Bilkent Univ, Fac Engn, Dept Elect & Elect Engn, Ankara, Turkiye; [Ozturk, Saban; Cukur, Tolga] Bilkent Univ, Natl Magnet Resonance Res Ctr UMRAM, Ankara, Turkiye; [Cukur, Tolga] Bilkent Univ, Neurosci Program, Ankara, Turkiyeen_US
dc.identifier.wosWOS:001108663100008en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster