dc.contributor.author | Ornek, Bulent Nafi | |
dc.date.accessioned | 2024-03-12T19:34:48Z | |
dc.date.available | 2024-03-12T19:34:48Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 1450-9628 | |
dc.identifier.uri | https://doi.org/10.46793/KgJMat2303.481O | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/2728 | |
dc.description.abstract | In this paper, we discuss different versions of the boundary Schwarz lemma and Hankel determinant for K (alpha) class. Also, for the function f(z) = z + c(2)z(2) + c(3)z(3) + center dot center dot center dot defined in the unit disc such that f is an element of X(alpha), we estimate a modulus of the angular derivative of f(z) function at the boundary point z(0) with f(z(0)) = z(0)/1+alpha and f '(z(0)) = 1/1+alpha . That is, we shall give an estimate below |f ''(z(0))| according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and z(1) not equal 0. The sharpness of this inequality is also proved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Univ Kragujevac, Fac Science | en_US |
dc.relation.ispartof | Kragujevac Journal Of Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fekete-Szego functional | en_US |
dc.subject | Julia-Wolff lemma | en_US |
dc.subject | Hankel determinant | en_US |
dc.subject | analytic function | en_US |
dc.subject | Schwarz lemma | en_US |
dc.subject | angular derivative | en_US |
dc.title | SOME RESULTS CONCERNED WITH HANKEL DETERMINANT | en_US |
dc.type | article | en_US |
dc.department | Amasya Üniversitesi | en_US |
dc.identifier.volume | 47 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 481 | en_US |
dc.identifier.endpage | 489 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85161340719 | en_US |
dc.identifier.doi | 10.46793/KgJMat2303.481O | |
dc.department-temp | [Ornek, Bulent Nafi] Amasya Univ, Dept Comp Engn, TR-05100 Amasya, Turkiye | en_US |
dc.identifier.wos | WOS:001010503300011 | en_US |