Basit öğe kaydını göster

dc.contributor.authorKulak, Oznur
dc.contributor.authorGurkanli, A. Turan
dc.date.accessioned2024-03-12T19:34:41Z
dc.date.available2024-03-12T19:34:41Z
dc.date.issued2021
dc.identifier.issn1300-0098
dc.identifier.issn1303-6149
dc.identifier.urihttps://doi.org/10.3906/mat-2101-94
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/528608
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2690
dc.description.abstractLet G be a compact abelian metric group with Haar measure lambda and (G) over cap its dual with Haar measure mu. Assume that 1 < p(i) < infinity, p(i)' = p(i)/p(i)-1, (i = 1, 2, 3) and theta >= 0. Let L-(pi' ,L-theta (G), (i = 1, 2, 3) be small Lebesgue spaces. A bounded sequence m(xi, eta) defined on G (over cap) x G (over cap) is said to be a bilinear multiplier on G of type [(p'(1); (p'(2); (p'(3)]. if the bilinear operator B-m associated with the symbol m B-m (f, g) (x) = Sigma(delta is an element of G)Sigma(t is an element of G) (f) over cap (s) (g) over cap (t) m(s, t) (s + t, x) defines a bounded bilinear operator from L-(p'1,L- theta (G) x L-(p2',L-theta (G) into L-(p3',L-theta (G). We denote by BM theta [(p(1)' ; (p(2)' ; (p(3)'] the space of all bilinear multipliers of type [(p(1)'; (p(2)'; (p(3)'](theta). In this paper, we discuss some basic properties of the space BM. [(p(1)'; (p(2)'; (p(3)'] and give examples of bilinear multipliers.en_US
dc.language.isoengen_US
dc.publisherTubitak Scientific & Technological Research Council Turkeyen_US
dc.relation.ispartofTurkish Journal Of Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilinear multipliersen_US
dc.subjectgrand Lebesgue spacesen_US
dc.subjectsmall Lebesgue spacesen_US
dc.titleBilinear multipliers of small Lebesgue spacesen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume45en_US
dc.identifier.issue5en_US
dc.identifier.startpage1959en_US
dc.identifier.endpage1984en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85116000858en_US
dc.identifier.trdizinid528608en_US
dc.identifier.doi10.3906/mat-2101-94
dc.department-temp[Kulak, Oznur] Amasya Univ, Fac Arts & Sci, Dept Math, Amasya, Turkey; [Gurkanli, A. Turan] Istanbul Arel Univ, Fac Sci & Letters, Dept Math & Comp Sci, Istanbul, Turkeyen_US
dc.identifier.wosWOS:000696502000001en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster