dc.contributor.author | Kulak, Oznur | |
dc.contributor.author | Gurkanli, A. Turan | |
dc.date.accessioned | 2024-03-12T19:34:41Z | |
dc.date.available | 2024-03-12T19:34:41Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1300-0098 | |
dc.identifier.issn | 1303-6149 | |
dc.identifier.uri | https://doi.org/10.3906/mat-2101-94 | |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/528608 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/2690 | |
dc.description.abstract | Let G be a compact abelian metric group with Haar measure lambda and (G) over cap its dual with Haar measure mu. Assume that 1 < p(i) < infinity, p(i)' = p(i)/p(i)-1, (i = 1, 2, 3) and theta >= 0. Let L-(pi' ,L-theta (G), (i = 1, 2, 3) be small Lebesgue spaces. A bounded sequence m(xi, eta) defined on G (over cap) x G (over cap) is said to be a bilinear multiplier on G of type [(p'(1); (p'(2); (p'(3)]. if the bilinear operator B-m associated with the symbol m B-m (f, g) (x) = Sigma(delta is an element of G)Sigma(t is an element of G) (f) over cap (s) (g) over cap (t) m(s, t) (s + t, x) defines a bounded bilinear operator from L-(p'1,L- theta (G) x L-(p2',L-theta (G) into L-(p3',L-theta (G). We denote by BM theta [(p(1)' ; (p(2)' ; (p(3)'] the space of all bilinear multipliers of type [(p(1)'; (p(2)'; (p(3)'](theta). In this paper, we discuss some basic properties of the space BM. [(p(1)'; (p(2)'; (p(3)'] and give examples of bilinear multipliers. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Tubitak Scientific & Technological Research Council Turkey | en_US |
dc.relation.ispartof | Turkish Journal Of Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Bilinear multipliers | en_US |
dc.subject | grand Lebesgue spaces | en_US |
dc.subject | small Lebesgue spaces | en_US |
dc.title | Bilinear multipliers of small Lebesgue spaces | en_US |
dc.type | article | en_US |
dc.department | Amasya Üniversitesi | en_US |
dc.identifier.volume | 45 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 1959 | en_US |
dc.identifier.endpage | 1984 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85116000858 | en_US |
dc.identifier.trdizinid | 528608 | en_US |
dc.identifier.doi | 10.3906/mat-2101-94 | |
dc.department-temp | [Kulak, Oznur] Amasya Univ, Fac Arts & Sci, Dept Math, Amasya, Turkey; [Gurkanli, A. Turan] Istanbul Arel Univ, Fac Sci & Letters, Dept Math & Comp Sci, Istanbul, Turkey | en_US |
dc.identifier.wos | WOS:000696502000001 | en_US |