Basit öğe kaydını göster

dc.contributor.authorKaraboga, Hasan Aykut
dc.contributor.authorGunel, Aslihan
dc.contributor.authorKorkut, Senay Vural
dc.contributor.authorDemir, Ibrahim
dc.contributor.authorCelik, Resit
dc.date.accessioned2024-03-12T19:34:36Z
dc.date.available2024-03-12T19:34:36Z
dc.date.issued2021
dc.identifier.issn2076-3425
dc.identifier.urihttps://doi.org/10.3390/brainsci11020150
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2657
dc.description.abstractClinical diagnosis of amyotrophic lateral sclerosis (ALS) is difficult in the early period. But blood tests are less time consuming and low cost methods compared to other methods for the diagnosis. The ALS researchers have been used machine learning methods to predict the genetic architecture of disease. In this study we take advantages of Bayesian networks and machine learning methods to predict the ALS patients with blood plasma protein level and independent personal features. According to the comparison results, Bayesian Networks produced best results with accuracy (0.887), area under the curve (AUC) (0.970) and other comparison metrics. We confirmed that sex and age are effective variables on the ALS. In addition, we found that the probability of onset involvement in the ALS patients is very high. Also, a person's other chronic or neurological diseases are associated with the ALS disease. Finally, we confirmed that the Parkin level may also have an effect on the ALS disease. While this protein is at very low levels in Parkinson's patients, it is higher in the ALS patients than all control groups.en_US
dc.language.isoengen_US
dc.publisherMdpien_US
dc.relation.ispartofBrain Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectmotor neuron diseaseen_US
dc.subjectamyotrophic lateral sclerosisen_US
dc.subjectParkinson's diseaseen_US
dc.subjectmachine learningen_US
dc.subjectBayesian networksen_US
dc.subjectpredictive modelen_US
dc.titleBayesian Network as a Decision Tool for Predicting ALS Diseaseen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridÇelik, Reşit/0000-0003-0833-0947
dc.authoridKorkut, Senay Vural/0000-0002-6260-0357
dc.authoridGunel, Aslihan/0000-0001-5301-2628
dc.authoridKaraboğa, Hasan Aykut/0000-0001-8877-3267
dc.authoridDEMIR, IBRAHIM/0000-0002-2734-4116
dc.identifier.volume11en_US
dc.identifier.issue2en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85100519148en_US
dc.identifier.doi10.3390/brainsci11020150
dc.department-temp[Karaboga, Hasan Aykut] Amasya Univ, Dept Stat, TR-05100 Amasya, Turkey; [Karaboga, Hasan Aykut; Demir, Ibrahim; Celik, Resit] Yildiz Tech Univ, Dept Stat, TR-34220 Istanbul, Turkey; [Gunel, Aslihan] Ahi Evran Univ, Dept Chem, TR-40200 Kirsehir, Turkey; [Korkut, Senay Vural] Yildiz Tech Univ, Dept Mol Biol & Genet, TR-34220 Istanbul, Turkeyen_US
dc.identifier.wosWOS:000622282500001en_US
dc.identifier.pmid33498784en_US
dc.authorwosidÇelik, Reşit/L-6597-2016
dc.authorwosidKorkut, Senay Vural/ABA-2454-2020
dc.authorwosidKaraboğa, Hasan Aykut/AAZ-8924-2020
dc.authorwosidGunel, Aslihan/AAP-3816-2021


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster