Basit öğe kaydını göster

dc.contributor.authorBilgili Gungor, Nurcan
dc.date.accessioned2024-03-12T19:34:33Z
dc.date.available2024-03-12T19:34:33Z
dc.date.issued2022
dc.identifier.issn1303-5991
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.970219
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1118374
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2631
dc.description.abstractOrthogonal metric space is a considerable generalization of a usual metric space obtained by establishing a perpendicular relation on a set. Very recently, the notions of orthogonality of the set and orthogonality of the metric space are described and notable fixed point theorems are given in orthogonal metric spaces. Some fixed point theorems for the generalizations of contraction principle via altering distance functions on orthogonal metric spaces are presented and proved in this paper. Furthermore, an example is presented to clarify these theorems.en_US
dc.language.isoengen_US
dc.publisherAnkara Univ, Fac Scien_US
dc.relation.ispartofCommunications Faculty Of Sciences University Of Ankara-Series A1 Mathematics And Statisticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFixed pointen_US
dc.subjectaltering distance functionsen_US
dc.subjectorthogonal metric spaceen_US
dc.subjectorthogonal contractionen_US
dc.titleSOME FIXED POINT THEOREMS ON ORTHOGONAL METRIC SPACES VIA EXTENSIONS OF ORTHOGONAL CONTRACTIONSen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume71en_US
dc.identifier.issue2en_US
dc.identifier.startpage481en_US
dc.identifier.endpage489en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1118374en_US
dc.identifier.doi10.31801/cfsuasmas.970219
dc.department-temp[Bilgili Gungor, Nurcan] Amasya Univ, Fac Sci & Arts, Dept Math, TR-05000 Amasya, Turkeyen_US
dc.identifier.wosWOS:000822397600005en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster