Basit öğe kaydını göster

dc.contributor.authorAsan, Alican
dc.contributor.authorTerzi, Ramazan
dc.contributor.authorAzginoglu, Nuh
dc.date.accessioned2024-03-12T19:34:29Z
dc.date.available2024-03-12T19:34:29Z
dc.date.issued2021
dc.identifier.issn2255-8683
dc.identifier.issn2255-8691
dc.identifier.urihttps://doi.org/10.2478/acss-2021-0014
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2597
dc.description.abstractAge estimation from brain MRI has proved to be considerably helpful in early diagnosis of diseases such as Alzheimer's and Parkinson's. In this study, curriculum learning effect on age estimation models was measured using a brain MRI dataset consisting of normal and anomaly data. Three different strategies were selected and compared using 3D Convolutional Neural Networks as the Deep Learning architecture. The strategies were as follows: (1) model training performed only on normal data, (2) model training performed on the entire dataset, (3) model training performed on normal data first and then further training on the entire dataset as per curriculum learning. The results showed that curriculum learning improved results by 20 % compared to traditional training strategies. These results suggested that in age estimation tasks datasets consisting of anomaly data could also be utilized to improve performance.en_US
dc.language.isoengen_US
dc.publisherSciendoen_US
dc.relation.ispartofApplied Computer Systemsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAge estimationen_US
dc.subjectage predictionen_US
dc.subjectbrain MRIen_US
dc.subjectcurriculum learningen_US
dc.titleCurriculum Learning for Age Estimation from Brain MRIen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridTerzi, Ramazan/0000-0003-2345-8666
dc.authoridAsan, Alican/0000-0002-9971-2678
dc.authoridAzginoglu, Nuh/0000-0002-4074-7366
dc.identifier.volume26en_US
dc.identifier.issue2en_US
dc.identifier.startpage116en_US
dc.identifier.endpage121en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.2478/acss-2021-0014
dc.department-temp[Asan, Alican] Presidency Republ Turkey, Dept Big Data & Artificial Intelligence, Digital Transformat Off, Ankara, Turkey; [Terzi, Ramazan] Amasya Univ, Dept Comp Engn, Amasya, Turkey; [Azginoglu, Nuh] Kayseri Univ, Dept Comp Engn, Kayseri, Turkeyen_US
dc.identifier.wosWOS:000746341300006en_US
dc.authorwosidTerzi, Ramazan/AAL-7473-2020


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster