dc.contributor.author | NEBIYEV, C. E. L. I. L. | |
dc.contributor.author | OKTEN, H. A. S. A. N. H. U. S. E. Y. I. N. | |
dc.date.accessioned | 2024-03-12T19:34:24Z | |
dc.date.available | 2024-03-12T19:34:24Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1787-2405 | |
dc.identifier.issn | 1787-2413 | |
dc.identifier.uri | https://doi.org/10.18514/MMN.2022.3655 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/2549 | |
dc.description.abstract | LetM be an R-module. If every cofinite essential submodule ofM has a g-supplement in M, then M is called a cofinitely essential g-supplemented (or briefly cofinitely eg-supplemented) module. In this work, some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of a cofinitely eg-supplemented module are cofinitely eg-supplemented. Let M be a cofinitely eg-supplemented module. Then every M-generated R-module is cofinitely eg-supplemented. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Univ Miskolc Inst Math | en_US |
dc.relation.ispartof | Miskolc Mathematical Notes | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | cofinite submodules | en_US |
dc.subject | essential submodules | en_US |
dc.subject | g-small submodules | en_US |
dc.subject | g-supplemented modules | en_US |
dc.title | COFINITELY ESSENTIAL G-SUPPLEMENTED MODULES | en_US |
dc.type | article | en_US |
dc.department | Amasya Üniversitesi | en_US |
dc.identifier.volume | 23 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 381 | en_US |
dc.identifier.endpage | 387 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85131717067 | en_US |
dc.identifier.doi | 10.18514/MMN.2022.3655 | |
dc.department-temp | [NEBIYEV, C. E. L. I. L.] Ondokuz Mayis Univ, Dept Math, Atakum, Samsun, Turkey; [OKTEN, H. A. S. A. N. H. U. S. E. Y. I. N.] Amasya Univ, Tech Sci Vocat Sch, Amasya, Turkey | en_US |
dc.identifier.wos | WOS:000834989200027 | en_US |