Basit öğe kaydını göster

dc.contributor.authorKonakoglu, Berkant
dc.contributor.authorAkar, Alper
dc.date.accessioned2024-03-12T19:30:13Z
dc.date.available2024-03-12T19:30:13Z
dc.date.issued2021
dc.identifier.issn1794-6190
dc.identifier.issn2339-3459
dc.identifier.urihttps://doi.org/10.15446/esrj.v25n4.91195
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2509
dc.description.abstractThis study evaluated different methods for geoid undulation prediction and included two types of artificial neural networks (ANNs) -the radial basis function neural network (RBFNN) and the generalized regression neural network (GRNN) -as well as conventional methods including multiple linear regression (MLR) and ten different interpolation techniques. In this work, k-fold cross-validation was used to evaluate the model and its behavior on the independent dataset. With this validation method, each of a k number of groups has the chance to be divided into training and testing data. The performances of the methods were evaluated in terms of the root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency coefficient (NSE), correlation coefficient (R-2), and using graphical indicators. The evaluation of the performance of the datasets obtained using cross-validation was performed in two ways. When the method having the minimum error result was accepted as the most appropriate method, the natural neighbor (NN) gave better results than the other methods (RMSE = 0.142 m, MAE = 0.097 m, NSE = 0.98986, and R-2 = 0.99011). On the other hand, it was observed that on average, the GRNN exhibited the best performance (RMSE = 0.185 m, MAE = 0.137 m, NSE = 0.98229, and R-2 = 0.98249).en_US
dc.language.isoengen_US
dc.publisherUniv Nacional De Colombiaen_US
dc.relation.ispartofEarth Sciences Research Journalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeneralized regression neural network (GRNN)en_US
dc.subjectRadial basis function neural network (RBFNN)en_US
dc.subjectMultiple linear regression (MLR)en_US
dc.subjectInterpolation methodsen_US
dc.subjectGeoid determinationen_US
dc.titleGeoid undulation prediction using ANNs (RBFNN and GRNN), multiple linear regression (MLR), and interpolation methods: A comparative studyen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridKonakoglu, Berkant/0000-0002-8276-587X
dc.identifier.volume25en_US
dc.identifier.issue4en_US
dc.identifier.startpage371en_US
dc.identifier.endpage382en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85124670293en_US
dc.identifier.doi10.15446/esrj.v25n4.91195
dc.department-temp[Konakoglu, Berkant] Amasya Univ, Tech Sci Vocat Sch, Amasya, Turkey; [Akar, Alper] Erzincan Binali Yildirim Univ, Vocat Sch, Erzincan, Turkeyen_US
dc.identifier.wosWOS:000754189600001en_US
dc.authorwosidKonakoglu, Berkant/GQB-2641-2022


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster