Basit öğe kaydını göster

dc.contributor.authorDemir, Ibrahim
dc.contributor.authorKaraboga, Hasan Aykut
dc.date.accessioned2024-03-12T19:30:07Z
dc.date.available2024-03-12T19:30:07Z
dc.date.issued2021
dc.identifier.issn1304-7205
dc.identifier.issn1304-7191
dc.identifier.urihttps://doi.org/10.14744/sigma.2021.00039
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2485
dc.description.abstractDeep learning methods are the subfield of the machine learning models that have spread rapidly in the field of engineering in the last decade. But, these methods are a fairly new in educational literature. The aim of this study was modeling and predicting mathematics achievement of successful and unsuccessful students via deep learning methods. For this purpose, Turkey's Programme for International Student Assessment (PISA 2018) survey data was used. Deep learning methods were displayed comparable performance to multi-layer perceptron and logistic regression. Jordan neural network method was found the most successful method among Elman neural network, Logistic regression and multi-layer perceptron methods with 0.826 accuracy and 0.739 area under curve scores. It was understood that deep learning methods can be used in the modelling and predicting of students' mathematics achievement.en_US
dc.language.isoengen_US
dc.publisherYildiz Technical Univen_US
dc.relation.ispartofSigma Journal Of Engineering And Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep Learningen_US
dc.subjectElman methoden_US
dc.subjectJordan methoden_US
dc.subjectPISAen_US
dc.subjectMathematics Achievementen_US
dc.titleModeling mathematics achievement with deep learning methodsen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridKaraboğa, Hasan Aykut/0000-0001-8877-3267
dc.identifier.volume39en_US
dc.identifier.issue5en_US
dc.identifier.startpage33en_US
dc.identifier.endpage40en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85149925554en_US
dc.identifier.doi10.14744/sigma.2021.00039
dc.department-temp[Demir, Ibrahim] Yildiz Tech Univ, Dept Stat, Istanbul, Turkey; [Karaboga, Hasan Aykut] Amasya Univ, Dept Educ Measurement & Evaluat, Amasya, Turkeyen_US
dc.identifier.wosWOS:000754310800002en_US
dc.authorwosidKaraboğa, Hasan Aykut/AAZ-8924-2020


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster