Basit öğe kaydını göster

dc.contributor.authorOzbey, Muzaffer
dc.contributor.authorDalmaz, Onat
dc.contributor.authorDar, Salman U. H.
dc.contributor.authorBedel, Hasan A.
dc.contributor.authorOzturk, Saban
dc.contributor.authorGungor, Alper
dc.contributor.authorCukur, Tolga
dc.date.accessioned2024-03-12T19:29:47Z
dc.date.available2024-03-12T19:29:47Z
dc.date.issued2023
dc.identifier.issn0278-0062
dc.identifier.issn1558-254X
dc.identifier.urihttps://doi.org/10.1109/TMI.2023.3290149
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2402
dc.description.abstractImputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols. A pervasive approach for synthesizing target images involves one-shot mapping through generative adversarial networks (GAN). Yet, GAN models that implicitly characterize the image distribution can suffer from limited sample fidelity. Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation. To capture a direct correlate of the image distribution, SynDiff leverages a conditional diffusion process that progressively maps noise and source images onto the target image. For fast and accurate image sampling during inference, large diffusion steps are taken with adversarial projections in the reverse diffusion direction. To enable training on unpaired datasets, a cycle-consistent architecture is devised with coupled diffusive and non-diffusive modules that bilaterally translate between two modalities. Extensive assessments are reported on the utility of SynDiff against competing GAN and diffusion models in multi-contrast MRI and MRI-CT translation. Our demonstrations indicate that SynDiff offers quantitatively and qualitatively superior performance against competing baselines.en_US
dc.description.sponsorshipTUBITAK BIDEB Scholarshipsen_US
dc.description.sponsorshipNo Statement Availableen_US
dc.language.isoengen_US
dc.publisherIeee-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactions On Medical Imagingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiological system modelingen_US
dc.subjectComputational modelingen_US
dc.subjectTrainingen_US
dc.subjectGenerative adversarial networksen_US
dc.subjectImage synthesisen_US
dc.subjectTask analysisen_US
dc.subjectGeneratorsen_US
dc.subjectMedical image translationen_US
dc.subjectsynthesisen_US
dc.subjectunsuperviseden_US
dc.subjectunpaireden_US
dc.subjectadversarialen_US
dc.subjectdiffusionen_US
dc.subjectgenerativeen_US
dc.titleUnsupervised Medical Image Translation With Adversarial Diffusion Modelsen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridDalmaz, Onat/0000-0001-7978-5311
dc.authoridCukur, Tolga/0000-0002-2296-851X
dc.authoridGungor, Alper/0000-0002-3043-9124
dc.authoridOzbey, Muzaffer/0000-0002-6262-8915
dc.identifier.volume42en_US
dc.identifier.issue12en_US
dc.identifier.startpage3524en_US
dc.identifier.endpage3539en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85163461143en_US
dc.identifier.doi10.1109/TMI.2023.3290149
dc.department-temp[Ozbey, Muzaffer; Dalmaz, Onat; Dar, Salman U. H.; Bedel, Hasan A.; Ozturk, Saban; Gungor, Alper; Cukur, Tolga] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkiye; [Ozbey, Muzaffer; Dalmaz, Onat; Dar, Salman U. H.; Bedel, Hasan A.; Ozturk, Saban; Gungor, Alper; Cukur, Tolga] Bilkent Univ, Natl Magnet Resonance Res Ctr UMRAM, TR-06800 Ankara, Turkiye; [Ozturk, Saban] Amasya Univ, Dept Elect Elect Engn, TR-05100 Amasya, Turkiye; [Gungor, Alper] SELSAN Res Ctr, TR-06200 Ankara, Turkiyeen_US
dc.identifier.wosWOS:001122030500031en_US
dc.identifier.pmid37379177en_US
dc.authorwosidCukur, Tolga/Z-5452-2019


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster