Basit öğe kaydını göster

dc.contributor.authorOzturk, Saban
dc.contributor.authorCukur, Tolga
dc.date.accessioned2024-03-12T19:29:45Z
dc.date.available2024-03-12T19:29:45Z
dc.date.issued2022
dc.identifier.issn2168-2194
dc.identifier.issn2168-2208
dc.identifier.urihttps://doi.org/10.1109/JBHI.2022.3187215
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2395
dc.description.abstractMelanoma is a fatal skin cancer that is curable and has dramatically increasing survival rate when diagnosed at early stages. Learning-based methods hold significant promise for the detection of melanoma from dermoscopic images. However, since melanoma is a rare disease, existing databases of skin lesions predominantly contain highly imbalanced numbers of benign versus malignant samples. In turn, this imbalance introduces substantial bias in classification models due to the statistical dominance of the majority class. To address this issue, we introduce a deep clustering approach based on the latent-space embedding of dermoscopic images. Clustering is achieved using a novel center-oriented margin-free triplet loss (COM-Triplet) enforced on image embeddings from a convolutional neural network backbone. The proposed method aims to form maximally-separated cluster centers as opposed to minimizing classification error, so it is less sensitive to class imbalance. To avoid the need for labeled data, we further propose to implement COM-Triplet based on pseudo-labels generated by a Gaussian mixture model (GMM). Comprehensive experiments show that deep clustering with COM-Triplet loss outperforms clustering with triplet loss, and competing classifiers in both supervised and unsupervised settings.en_US
dc.description.sponsorshipTUBA GEBIP 2015 award; TUBA BAGEP 2017 awarden_US
dc.description.sponsorshipThe work of T. Cukur was supported by TUBA GEBIP 2015 and BAGEP 2017 awards.en_US
dc.language.isoengen_US
dc.publisherIeee-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Journal Of Biomedical And Health Informaticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMelanomaen_US
dc.subjectLesionsen_US
dc.subjectSkinen_US
dc.subjectTrainingen_US
dc.subjectFeature extractionen_US
dc.subjectTransfer learningen_US
dc.subjectReliabilityen_US
dc.subjectConvolutional neural networksen_US
dc.subjectdata imbalanceen_US
dc.subjectdeep clusteringen_US
dc.subjectskin lesionen_US
dc.subjecttriplet lossen_US
dc.titleDeep Clustering via Center-Oriented Margin Free-Triplet Loss for Skin Lesion Detection in Highly Imbalanced Datasetsen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridÖztürk, Şaban/0000-0003-2371-8173
dc.authoridÇukur, Tolga/0000-0002-2296-851X
dc.identifier.volume26en_US
dc.identifier.issue9en_US
dc.identifier.startpage4679en_US
dc.identifier.endpage4690en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/JBHI.2022.3187215
dc.department-temp[Ozturk, Saban] Amasya Univ, Dept Elect & Elect Engn, TR-05001 Amasya, Turkey; [Ozturk, Saban; Cukur, Tolga] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey; [Ozturk, Saban; Cukur, Tolga] Bilkent Univ, Natl Magnet Resonance Res Ctr, TR-06800 Ankara, Turkey; [Cukur, Tolga] Bilkent Univ, Neurosci Program, Sabuncu Brain Res Ctr, TR-06800 Ankara, Turkeyen_US
dc.identifier.wosWOS:000852247000033en_US
dc.identifier.pmid35767499en_US
dc.authorwosidÖztürk, Şaban/ABI-3936-2020
dc.authorwosidÇukur, Tolga/Z-5452-2019


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster