• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conjugated linoleic acid protects brain mitochondrial function in acrolein induced male rats

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2021

Author

Aydin, Birsen
Guler Sahin, Cansu
Sekeroglu, Vedat
Atli Sekeroglu, Zulal

Metadata

Show full item record

Abstract

Acrolein (AC) is a toxic substance that can have a neurotoxic effect. It can cause oxidative stress and mitochondrial dysfunction. Conjugated linoleic acid (CLA), a dietary supplement, has many biological functions. Limited information is available about the effect of CLA on AC-induced brain toxicity. Therefore, the present study aims to investigate the effect of CLA on mitochondrial oxidative stress, respiratory enzymes, krebs cycle enzymes and ATP levels in AC treated rat brain. Sprague Dawley male rats were given AC (5 mg/kg i.p.), CLA (200 mg/kg orally) and CLA with AC for six days per week for 30 days. Some oxidative stress parameters and mitochondrial enzymes such as manganese super oxide dismutase, glutathione peroxidase, NADP(+)-dependent isocitrate dehydrogenase (ICDH), alpha-ketoglutarate dehydrogenase (alpha-KGDH), malate dehydrogenase, reduced glutathione (GSH), lipid peroxidation (LP), protein carbonyl (PC), oxidative phosphorylation (OXPHOS) and tricarboxylic acid cycle (TCA) enzymes, and ATP levels were determined. AC significantly decreased the activities of GSH, antioxidant enzymes, OXPHOS enzymes (complex I and IV), TCA enzymes (ICDH and alpha-KGDH) and ATP levels. Significant increases were also observed in mitochondrial LP and PC levels in AC group. Co-treatment with AC + CLA improved oxidative stress and mitochondrial dysfunction caused by AC. As a result of our findings, it was observed that CLA was effective in improving oxidative stress and impaired mitochondrial functions in brain tissue by the effect of AC. Considering the association between neurodegenerative diseases and mitochondrial dysfunction, CLA can play a role in the prevention and therapy of neurodegenerative disorders.

Volume

31

Issue

9

URI

https://doi.org/10.1080/15376516.2021.1952673
https://hdl.handle.net/20.500.12450/2360

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [458]
  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: