• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An investigation on environmental pollution due to essential heavy metals: a prediction model through multilayer perceptrons

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2023

Author

Sari, Murat
Yalcin, Ibrahim Ertugrul
Taner, Mahmut
Cosgun, Tahir
Ozyigit, Ibrahim Ilker

Metadata

Show full item record

Abstract

This research is to predict heavy metal levels in plants, particularly in Robinia pseudoacacia L., and soils using an effective artificial intelligence approach with some ecological parameters, thereby significantly eliminating common defects such as high cost and seriously tedious and time-consuming laboratory procedures. In this respect, the artificial neural network (ANN) is employed to estimate the concentrations of essential heavy metals such as Fe, Mn and Ni, depending on the Cu and Zn concentrations of plant and soil samples collected from five different locations. The derived relative errors for the constructed ANN model have been computed within the ranges 0.041-0.051, 0.017-0.025, and 0.026-0.029 for the training, testing and holdout data regarding Fe, Mn, and Ni, respectively. In addition, it has been realized that the relative errors could be diminished up to 0.007 for Fe, 0.014 for Mn and 0.022 for Ni by considering the Cu, Zn, location and plant parts as independent variables during the analysis. The results produced seem instructive and pioneering for environmentalists and scientists to design optimal study programs to leave a livable ecosystem. Novelty statement The levels of essential heavy metals, Fe, Mn, Ni, based on Zn and Cu in plant and soil samples have been predicted through an AI-based prediction model, a class of feedforward artificial neural networks (ANNs) with a multilayer perceptron (MLP). Thereby common drawbacks such as high cost and severely time-consuming laboratory procedures have been significantly eradicated. In the evaluation of different pollution levels at locations, it has been shown that the ANN method can overcome several disadvantages of analytical element analyzers to monitor the amounts of heavy metals such as Fe, Mn, and Ni in soil and plants.

Volume

25

Issue

1

URI

https://doi.org/10.1080/15226514.2022.2059056
https://hdl.handle.net/20.500.12450/2353

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [458]
  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: