• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

An investigation on environmental pollution due to essential heavy metals: a prediction model through multilayer perceptrons

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2023

Yazar

Sari, Murat
Yalcin, Ibrahim Ertugrul
Taner, Mahmut
Cosgun, Tahir
Ozyigit, Ibrahim Ilker

Üst veri

Tüm öğe kaydını göster

Özet

This research is to predict heavy metal levels in plants, particularly in Robinia pseudoacacia L., and soils using an effective artificial intelligence approach with some ecological parameters, thereby significantly eliminating common defects such as high cost and seriously tedious and time-consuming laboratory procedures. In this respect, the artificial neural network (ANN) is employed to estimate the concentrations of essential heavy metals such as Fe, Mn and Ni, depending on the Cu and Zn concentrations of plant and soil samples collected from five different locations. The derived relative errors for the constructed ANN model have been computed within the ranges 0.041-0.051, 0.017-0.025, and 0.026-0.029 for the training, testing and holdout data regarding Fe, Mn, and Ni, respectively. In addition, it has been realized that the relative errors could be diminished up to 0.007 for Fe, 0.014 for Mn and 0.022 for Ni by considering the Cu, Zn, location and plant parts as independent variables during the analysis. The results produced seem instructive and pioneering for environmentalists and scientists to design optimal study programs to leave a livable ecosystem. Novelty statement The levels of essential heavy metals, Fe, Mn, Ni, based on Zn and Cu in plant and soil samples have been predicted through an AI-based prediction model, a class of feedforward artificial neural networks (ANNs) with a multilayer perceptron (MLP). Thereby common drawbacks such as high cost and severely time-consuming laboratory procedures have been significantly eradicated. In the evaluation of different pollution levels at locations, it has been shown that the ANN method can overcome several disadvantages of analytical element analyzers to monitor the amounts of heavy metals such as Fe, Mn, and Ni in soil and plants.

Cilt

25

Sayı

1

Bağlantı

https://doi.org/10.1080/15226514.2022.2059056
https://hdl.handle.net/20.500.12450/2353

Koleksiyonlar

  • PubMed İndeksli Yayınlar Koleksiyonu [458]
  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: