Basit öğe kaydını göster

dc.contributor.authorOrnek, Bulent Nafi
dc.contributor.authorAydemir, Salih Berkan
dc.contributor.authorDuzenli, Timur
dc.contributor.authorOzak, Bilal
dc.date.accessioned2024-03-12T19:29:20Z
dc.date.available2024-03-12T19:29:20Z
dc.date.issued2022
dc.identifier.issn0925-2312
dc.identifier.issn1872-8286
dc.identifier.urihttps://doi.org/10.1016/j.neucom.2022.04.010
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2274
dc.description.abstractProcessing of complex valued data has become a challenge issue in classification problems where artificial neural networks are used as the classifier. This issue particularly arises in design of complex valued activation functions. To address this problem, a complex valued activation function which is obtained by using Schwarz lemma is proposed in this study and a complex-valued extreme learning classifier is utilized to analyse its classification performance. Accordingly, three inequalities have been presented first by considering the different versions of the boundary Schwarz lemma for N (a) class and then, the proposed activation function has been obtained by performing extremal analyses of these inequalities. During simulations, complex extreme learning machine has been used to compare the classification performances of the proposed and other frequently-used activation functions. In classification step, three multi-class and four binary-class datasets have been utilized. In addition, proposed activation function has been considered for two exemplary function approximation problems. According to simulation results, proposed activation function outperforms other activation functions in term of classification accuracy for all considered datasets. It has also been observed that the proposed activation function gives a lower root mean square error than other trigonometric functions in function approximation problem. (c) 2022 Elsevier B.V. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofNeurocomputingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSchwarz lemmaen_US
dc.subjectAnalytic functionen_US
dc.subjectComplex valued activation functionen_US
dc.subjectComplex extreme learning machineen_US
dc.subjectClassificationen_US
dc.subjectArtificial neural networken_US
dc.titleSome remarks on activation function design in complex extreme learning using Schwarz lemmaen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridDüzenli, Timur/0000-0003-0210-5626;
dc.identifier.volume492en_US
dc.identifier.startpage23en_US
dc.identifier.endpage33en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85127786004en_US
dc.identifier.doi10.1016/j.neucom.2022.04.010
dc.department-temp[Ornek, Bulent Nafi; Aydemir, Salih Berkan; Ozak, Bilal] Amasya Univ, Dept Comp Engn, TR-05100 Amasya, Turkey; [Duzenli, Timur] Amasya Univ, Dept Elect & Elect Engn, TR-05100 Amasya, Turkeyen_US
dc.identifier.wosWOS:000796480000002en_US
dc.authorwosidDüzenli, Timur/AGE-5588-2022
dc.authorwosidozak, bilal/GRS-0620-2022


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster