dc.contributor.author | Gungor, Alper | |
dc.contributor.author | Dar, Salman U. H. | |
dc.contributor.author | Ozturk, Saban | |
dc.contributor.author | Korkmaz, Yilmaz | |
dc.contributor.author | Bedel, Hasan A. | |
dc.contributor.author | Elmas, Gokberk | |
dc.contributor.author | Ozbey, Muzaffer | |
dc.date.accessioned | 2024-03-12T19:29:18Z | |
dc.date.available | 2024-03-12T19:29:18Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 1361-8415 | |
dc.identifier.issn | 1361-8423 | |
dc.identifier.uri | https://doi.org/10.1016/j.media.2023.102872 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/2263 | |
dc.description.abstract | Deep MRI reconstruction is commonly performed with conditional models that de-alias undersampled acquisitions to recover images consistent with fully-sampled data. Since conditional models are trained with knowledge of the imaging operator, they can show poor generalization across variable operators. Unconditional models instead learn generative image priors decoupled from the operator to improve reliability against domain shifts related to the imaging operator. Recent diffusion models are particularly promising given their high sample fidelity. Nevertheless, inference with a static image prior can perform suboptimally. Here we propose the first adaptive diffusion prior for MRI reconstruction, AdaDiff, to improve performance and reliability against domain shifts. AdaDiff leverages an efficient diffusion prior trained via adversarial mapping over large reverse diffusion steps. A two-phase reconstruction is executed following training: a rapid-diffusion phase that produces an initial reconstruction with the trained prior, and an adaptation phase that further refines the result by updating the prior to minimize data-consistency loss. Demonstrations on multi-contrast brain MRI clearly indicate that AdaDiff outperforms competing conditional and unconditional methods under domain shifts, and achieves superior or on par within-domain performance. | en_US |
dc.description.sponsorship | TUBITAK BIDEB scholarship; TUBITAK 1001 Research Grant [121E488]; TUBA GEBIP 2015 fellowship; BAGEP 2017 fellowship | en_US |
dc.description.sponsorship | This study was supported in part by a TUBITAK BIDEB scholarship awarded to A. Gungor, by a TUBITAK BIDEB scholarship awarded to S. Ozturk, and by a TUBITAK 1001 Research Grant (121E488) , a TUBA GEBIP 2015 fellowship, and a BAGEP 2017 fellowship awarded to T. Cukur. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Medical Image Analysis | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Diffusion | en_US |
dc.subject | Adaptive | en_US |
dc.subject | MRI | en_US |
dc.subject | Reconstruction | en_US |
dc.subject | Generative | en_US |
dc.subject | Image prior | en_US |
dc.title | Adaptive diffusion priors for accelerated MRI reconstruction | en_US |
dc.type | article | en_US |
dc.department | Amasya Üniversitesi | en_US |
dc.authorid | Çukur, Tolga/0000-0002-2296-851X | |
dc.authorid | Ozbey, Muzaffer/0000-0002-6262-8915 | |
dc.authorid | Elmas, Gokberk/0000-0003-0124-6048 | |
dc.authorid | Dar, Salman Ul Hassan/0000-0002-7603-4245 | |
dc.authorid | Gungor, Alper/0000-0002-3043-9124 | |
dc.identifier.volume | 88 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85163468057 | en_US |
dc.identifier.doi | 10.1016/j.media.2023.102872 | |
dc.department-temp | [Gungor, Alper; Dar, Salman U. H.; Ozturk, Saban; Korkmaz, Yilmaz; Bedel, Hasan A.; Elmas, Gokberk; Ozbey, Muzaffer; Cukur, Tolga] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkiye; [Gungor, Alper; Dar, Salman U. H.; Ozturk, Saban; Korkmaz, Yilmaz; Bedel, Hasan A.; Elmas, Gokberk; Ozbey, Muzaffer; Cukur, Tolga] Bilkent Univ, Natl Magnet Resonance Res Ctr UMRAM, TR-06800 Ankara, Turkiye; [Gungor, Alper] ASELSAN Res Ctr, TR-06200 Ankara, Turkiye; [Dar, Salman U. H.] Heidelberg Univ Hosp, Dept Internal Med 3, D-69120 Heidelberg, Germany; [Ozturk, Saban] Amasya Univ, Dept Elect & Elect Engn, TR-05100 Amasya, Turkiye; [Cukur, Tolga] Bilkent Univ, Neurosci Program, TR-06800 Ankara, Turkiye | en_US |
dc.identifier.wos | WOS:001038893100001 | en_US |
dc.identifier.pmid | 37384951 | en_US |
dc.authorwosid | Çukur, Tolga/Z-5452-2019 | |