Basit öğe kaydını göster

dc.contributor.authorGungor, Alper
dc.contributor.authorDar, Salman U. H.
dc.contributor.authorOzturk, Saban
dc.contributor.authorKorkmaz, Yilmaz
dc.contributor.authorBedel, Hasan A.
dc.contributor.authorElmas, Gokberk
dc.contributor.authorOzbey, Muzaffer
dc.date.accessioned2024-03-12T19:29:18Z
dc.date.available2024-03-12T19:29:18Z
dc.date.issued2023
dc.identifier.issn1361-8415
dc.identifier.issn1361-8423
dc.identifier.urihttps://doi.org/10.1016/j.media.2023.102872
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2263
dc.description.abstractDeep MRI reconstruction is commonly performed with conditional models that de-alias undersampled acquisitions to recover images consistent with fully-sampled data. Since conditional models are trained with knowledge of the imaging operator, they can show poor generalization across variable operators. Unconditional models instead learn generative image priors decoupled from the operator to improve reliability against domain shifts related to the imaging operator. Recent diffusion models are particularly promising given their high sample fidelity. Nevertheless, inference with a static image prior can perform suboptimally. Here we propose the first adaptive diffusion prior for MRI reconstruction, AdaDiff, to improve performance and reliability against domain shifts. AdaDiff leverages an efficient diffusion prior trained via adversarial mapping over large reverse diffusion steps. A two-phase reconstruction is executed following training: a rapid-diffusion phase that produces an initial reconstruction with the trained prior, and an adaptation phase that further refines the result by updating the prior to minimize data-consistency loss. Demonstrations on multi-contrast brain MRI clearly indicate that AdaDiff outperforms competing conditional and unconditional methods under domain shifts, and achieves superior or on par within-domain performance.en_US
dc.description.sponsorshipTUBITAK BIDEB scholarship; TUBITAK 1001 Research Grant [121E488]; TUBA GEBIP 2015 fellowship; BAGEP 2017 fellowshipen_US
dc.description.sponsorshipThis study was supported in part by a TUBITAK BIDEB scholarship awarded to A. Gungor, by a TUBITAK BIDEB scholarship awarded to S. Ozturk, and by a TUBITAK 1001 Research Grant (121E488) , a TUBA GEBIP 2015 fellowship, and a BAGEP 2017 fellowship awarded to T. Cukur.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofMedical Image Analysisen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDiffusionen_US
dc.subjectAdaptiveen_US
dc.subjectMRIen_US
dc.subjectReconstructionen_US
dc.subjectGenerativeen_US
dc.subjectImage prioren_US
dc.titleAdaptive diffusion priors for accelerated MRI reconstructionen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridÇukur, Tolga/0000-0002-2296-851X
dc.authoridOzbey, Muzaffer/0000-0002-6262-8915
dc.authoridElmas, Gokberk/0000-0003-0124-6048
dc.authoridDar, Salman Ul Hassan/0000-0002-7603-4245
dc.authoridGungor, Alper/0000-0002-3043-9124
dc.identifier.volume88en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85163468057en_US
dc.identifier.doi10.1016/j.media.2023.102872
dc.department-temp[Gungor, Alper; Dar, Salman U. H.; Ozturk, Saban; Korkmaz, Yilmaz; Bedel, Hasan A.; Elmas, Gokberk; Ozbey, Muzaffer; Cukur, Tolga] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkiye; [Gungor, Alper; Dar, Salman U. H.; Ozturk, Saban; Korkmaz, Yilmaz; Bedel, Hasan A.; Elmas, Gokberk; Ozbey, Muzaffer; Cukur, Tolga] Bilkent Univ, Natl Magnet Resonance Res Ctr UMRAM, TR-06800 Ankara, Turkiye; [Gungor, Alper] ASELSAN Res Ctr, TR-06200 Ankara, Turkiye; [Dar, Salman U. H.] Heidelberg Univ Hosp, Dept Internal Med 3, D-69120 Heidelberg, Germany; [Ozturk, Saban] Amasya Univ, Dept Elect & Elect Engn, TR-05100 Amasya, Turkiye; [Cukur, Tolga] Bilkent Univ, Neurosci Program, TR-06800 Ankara, Turkiyeen_US
dc.identifier.wosWOS:001038893100001en_US
dc.identifier.pmid37384951en_US
dc.authorwosidÇukur, Tolga/Z-5452-2019


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster