Basit öğe kaydını göster

dc.contributor.authorOzdogan-Sarikoc, Gulhan
dc.contributor.authorSarikoc, Mehmet
dc.contributor.authorCelik, Mete
dc.contributor.authorDadaser-Celik, Filiz
dc.date.accessioned2024-03-12T19:29:14Z
dc.date.available2024-03-12T19:29:14Z
dc.date.issued2023
dc.identifier.issn0022-1694
dc.identifier.issn1879-2707
dc.identifier.urihttps://doi.org/10.1016/j.jhydrol.2022.128766
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2242
dc.description.abstractReservoirs are essential structures that have important functions in water supply, flood control, irrigation for agriculture, and hydroelectric production. These functions can only be realized with an effective reservoir operation. Artificial intelligence (AI) techniques can be used for forecasting reservoir volumes, which is a critical parameter for reservoir operation and management. This study predicts the reservoir volumes using AI tech-niques, Artificial Neural Networks (ANN), Support Vector Regression (SVR), and Long Short-Term Memory (LSTM), in two reservoirs (Ladik and Yedikir Reservoirs). The effects of various parameters on the performance of the models were analyzed. The results show that (1) the number of epochs affects the performance of the ANN and LSTM models considerably, but the SVR model performance is sensitive to kernel function type, (2) the SVR model does not produce as good results when compared to the ANN and LSTM models. The SVR model per-formance can be improved with more advanced strategies, (3) the LSTM model, which is good at modelling time series data, showed the best performance for both reservoirs, indicating that it is more adaptive to temporal dynamics in water volumes than the ANN and SVR models. Overall, AI-based models provided promising results for estimating reservoir volumes.en_US
dc.description.sponsorshipErciyes University Research Fund; [FDK- 2020-10451]en_US
dc.description.sponsorshipAcknowledgement This study was supported by Erciyes University Research Fund (FDK- 2020-10451) .en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal Of Hydrologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectReservoir Operationen_US
dc.subjectArtificial Neural Networks (ANN)en_US
dc.subjectSupport Vector Regression (SVR)en_US
dc.subjectLong Short-Term Memory (LSTM)en_US
dc.titleReservoir volume forecasting using artificial intelligence-based models: Artificial Neural Networks, Support Vector Regression, and Long Short-Term Memoryen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridSARIKOÇ, Mehmet/0000-0002-3081-1686
dc.authoridCelik, Mete/0000-0002-1488-1502
dc.identifier.volume616en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85145556576en_US
dc.identifier.doi10.1016/j.jhydrol.2022.128766
dc.department-temp[Ozdogan-Sarikoc, Gulhan] Amasya Univ, Suluova Vocat Sch, Dept Vegetable & Anim Prod, Amasya, Turkiye; [Sarikoc, Mehmet] Erciyes Univ, Distance Educ Applicat & Res Ctr, Kayseri, Turkiye; [Celik, Mete] Erciyes Univ, Dept Comp Engn, Kayseri, Turkiye; [Dadaser-Celik, Filiz] Erciyes Univ, Dept Environm Engn, Kayseri, Turkiyeen_US
dc.identifier.wosWOS:000895772200002en_US
dc.authorwosidSARIKOÇ, Mehmet/HNR-0989-2023


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster