• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Residual LSTM layered CNN for classification of gastrointestinal tract diseases

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Ozturk, Saban
Ozkaya, Umut

Üst veri

Tüm öğe kaydını göster

Özet

nowadays, considering the number of patients per specialist doctor, the size of the need for automatic medical image analysis methods can be understood. These systems, which are very advantageous compared to manual systems both in terms of cost and time, benefit from artificial intelligence (AI). AI mechanisms that mimic the decision-making process of a specialist increase their diagnosis performance day by day, depending on technological developments. In this study, an AI method is proposed to effectively classify Gastrointestinal (GI) Tract Image datasets containing a small number of labeled data. The proposed AI method uses the convolutional neural network (CNN) architecture, which is accepted as the most successful automatic classification method of today, as a backbone. According to our approach, a shallowly trained CNN architecture needs to be supported by a strong classifier to classify unbalanced datasets robustly. For this purpose, the features in each pooling layer in the CNN architecture are transmitted to an LSTM layer. A classification is made by combining all LSTM layers. All experiments are carried out using AlexNet, GoogLeNet, and ResNet to evaluate the contribution of the proposed residual LSTM structure fairly. Besides, three different experiments are carried out with 2000, 4000, and 6000 samples to determine the effect of sample number change on the proposed method. The performance of the proposed method is higher than other state-of-the-art methods.

Cilt

113

Bağlantı

https://doi.org/10.1016/j.jbi.2020.103638
https://hdl.handle.net/20.500.12450/2236

Koleksiyonlar

  • PubMed İndeksli Yayınlar Koleksiyonu [458]
  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: