• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Sindi, Hatem
Nour, Majid
Rawa, Muhyaddin
Ozturk, Saban
Polat, Kemal

Üst veri

Tüm öğe kaydını göster

Özet

As a result of the widespread use of power electronic equipment and the increase in consumption, the importance of effective energy policies and the smart grid begins to increase. Nonlinear loads and other loads in electric power systems are considered as the main reason for power quality disturbance. Distortions in signal quality and shape due to power quality disturbance cause a decrease in total efficiency. The proposed hybrid convolutional neural network method consists of a 1D convolutional neural network structure and a 2D convolutional neural network structure. The features acquired by these two convolutional neural network architectures are classified using the fully connected layer, which is traditionally used as the classifier of convolutional neural network architectures. Power signals are processed using a 1D convolutional neural network in their original form. Then these signals are converted into images and processed using a 2D convolutional neural network. Then, feature vectors generated by 1D and 2D convolutional neural networks are combined. Finally, this combined vector is classified by a fully connected layer. The proposed method is well suited to the nature of signal processing. It is a novel approach that covers the steps of an expert examining a signal. The proposed framework is compared with other state-of-the-art power quality disturbance classification methods in the literature. While the proposed method's classification performance is relatively high compared to other methods, the computational complexity is almost the same.

Cilt

174

Bağlantı

https://doi.org/10.1016/j.eswa.2021.114785
https://hdl.handle.net/20.500.12450/2209

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: