• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance comparison of empirical model and Particle Swarm Optimization & its boiling point prediction models for waste sunflower oil biodiesel

Erişim

info:eu-repo/semantics/openAccess

Tarih

2022

Yazar

Samuel, Olusegun D.
Kaveh, Mohammad
Oyejide, Oluwayomi J.
Elumalai, P. V.
Verma, Tikendra Nath
Nisar, Kottakkaran Sooppy
Saleel, C. Ahamed

Üst veri

Tüm öğe kaydını göster

Özet

The absence of correlations for predicting the boiling point of biodiesels prevents fuel users to achieve effective engine performance. Among the quality regulator of rudimentary fuel properties is the boiling point and its absence in literature is preventing fuel handlers to achieve actual engine performance. In this study, the mechanism of sunflower oil methanolysis was investigated by Response Surface Methodology (RSM) and Particle Swarm Optimization (PSO). The empirical model (EM) was utilized to correlate the optimal yield and trans-esterification variables for methylic biodiesel production. Thereafter, statistical regression techniques were employed to model the MBP of biodiesel vs. biodiesel fraction and MBP of biodiesel vs. kinematic viscosity. The yield of waste sunflower oil methyl ester (WSOME) (97%) was the uppermost at the methanol/SFO molar ratio of optimal of 6/1, KOH of 1 %wt, and retention time of 78 min. The PSO model exhibited an advanced coefficient of determination, and an inferior value of root mean squared errors related to the RSM model. PSO predicted values, as related to RSM predicted yield shows its dependability and expediency for prediction deprived of conservative experimentation. The fuel properties of the WSOME synthesized were within the ranges of established green fuel standards. The RSM with PSO has been exhibited efficient tools for exploring the methylic biodiesel production from WSO. Least square regression and parabolic equation correlated MBP as a function of bio-diesel fraction and MBP as a function of kinematic viscosity. In conclusion, the results of this study can be useful for biodiesel production from industrial waste oil and the prediction of MBP in the biodiesel industry.

Cilt

33

Bağlantı

https://doi.org/10.1016/j.csite.2022.101947
https://hdl.handle.net/20.500.12450/2197

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: