Basit öğe kaydını göster

dc.contributor.authorYurdusev, Ayse Aydin
dc.contributor.authorAdem, Kemal
dc.contributor.authorHekim, Mahmut
dc.date.accessioned2024-03-12T19:29:03Z
dc.date.available2024-03-12T19:29:03Z
dc.date.issued2023
dc.identifier.issn1746-8094
dc.identifier.issn1746-8108
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2022.104360
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2171
dc.description.abstractIn this study, we focus on increasing the visibility of microcalcifications (MCs) in mammogram images by means of the difference filter and classifying the visibility-increased MCs by using Yolov4 deep learning model. The same classification experiments are reperformed for also the widely used Faster R-CNN deep learning model to compare with the proposed approach. For this aim, the difference filter is applied to the sections taken from normal and abnormal labeled mammogram images, and the filtered images are used as inputs to Yolov4 and Faster R-CNN models in order to classify as normal and abnormal. In order to show the contribution of the difference filter to the classification success, the experiments are reimplemented without using the difference filter. The difference filter based on the neighborhood relations of the image pixels significantly improves the classification success ratios of the classifier models used in the study since it increases especially the visibility of the rounded edges and makes microcalcifications in the image more prominent. As a result, the experiments show that the use of deep learning models together with the difference filter contributes significantly to the classification success. Finally, this study gives rise to the idea that it can greatly contribute to studies reading of the mammograms with MCs (abnormal) highlighted by the use of difference filter.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofBiomedical Signal Processing And Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMicrocalcificationen_US
dc.subjectMammogramen_US
dc.subjectDifference filteren_US
dc.subjectDeep learningen_US
dc.subjectYolov4en_US
dc.subjectFaster R-CNNen_US
dc.titleDetection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning modelen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridAdem, Kemal/0000-0002-3752-7354
dc.identifier.volume80en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85141443072en_US
dc.identifier.doi10.1016/j.bspc.2022.104360
dc.department-temp[Yurdusev, Ayse Aydin] Amasya Univ, Dept Elect & Elect Engn, Amasya, Turkiye; [Adem, Kemal] Sivas Univ Sci & Technol, Dept Comp Engn, Sivas, Turkiye; [Hekim, Mahmut] Tokat Gaziosmanpasa Univ, Dept Elect & Elect Engn, Tokat, Turkiyeen_US
dc.identifier.wosWOS:000891150200006en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster