dc.contributor.author | Sahin, Hakan | |
dc.date.accessioned | 2024-03-12T19:29:02Z | |
dc.date.available | 2024-03-12T19:29:02Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 2662-2009 | |
dc.identifier.issn | 2538-225X | |
dc.identifier.uri | https://doi.org/10.1007/s43036-021-00168-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/2161 | |
dc.description.abstract | In this paper, we first introduce a new concept of Q-function on partial metric spaces. Also, we give a new definition of (alpha,phi,q)-contractive mapping by considering the new kind of Q-function. Then we obtain some best proximity point results for such mappings. Thus, we improve and unify many well-known results in the literature. Moreover, we provide some illustrative and nontrivial examples. Therefore, we show that the approach of Haghi et al. (Topol Appl 160:450-454, 2013) cannot be applied to our results. Finally, we obtain a solution of nonlinear fractional differential equations using the new Q-function. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Basel Ag | en_US |
dc.relation.ispartof | Advances In Operator Theory | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Nonlinear fractional differential equations | en_US |
dc.subject | Best proximity point | en_US |
dc.subject | Q-function | en_US |
dc.subject | alpha-phi-Contractive | en_US |
dc.title | Existence and uniqueness results for nonlinear fractional differential equations via new Q-function | en_US |
dc.type | article | en_US |
dc.department | Amasya Üniversitesi | en_US |
dc.authorid | Sahin, Hakan/0000-0002-4671-7950 | |
dc.identifier.volume | 7 | en_US |
dc.identifier.issue | 1 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85117731260 | en_US |
dc.identifier.doi | 10.1007/s43036-021-00168-9 | |
dc.department-temp | [Sahin, Hakan] Amasya Univ, Fac Sci & Arts, Dept Math, Amasya, Turkey | en_US |
dc.identifier.wos | WOS:000710131800001 | en_US |