Basit öğe kaydını göster

dc.contributor.authorKonakoglu, Berkant
dc.date.accessioned2024-03-12T19:29:00Z
dc.date.available2024-03-12T19:29:00Z
dc.date.issued2021
dc.identifier.issn2213-5812
dc.identifier.issn2213-5820
dc.identifier.urihttps://doi.org/10.1007/s40328-021-00336-6
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2144
dc.description.abstractThe prediction of an accurate geodetic point velocity has great importance in geosciences. The purpose of this work is to explore the predictive capacity of three artificial neural network (ANN) models in predicting geodetic point velocities. First, the multi-layer perceptron neural network (MLPNN) model was developed with two hidden layers. The generalized regression neural network (GRNN) model was then applied for the first time. Afterwards, the radial basis function neural network (RBFNN) model was trained and tested with the same data. Latitude (phi) and longitude (lambda) were utilized as inputs and the geodetic point velocities (V-X, V-Y, V-Z) as outputs to the MLPNN, GRNN, and RBFNN models. The performances of all ANN models were evaluated using root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R-2). The first investigation demonstrated that it was possible to predict the geodetic point velocities by using all the components as output parameters simultaneously. The other result is that all ANN models were able to predict the geodetic point velocity with satisfactory accuracy; however, the GRNN model provided better accuracy than the MLPNN and RBFNN models. For example, the RMSE and MAE values were 1.77-1.88 mm and 1.44-1.51 mm, respectively, for the GRNN model.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofActa Geodaetica Et Geophysicaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeodetic point velocityen_US
dc.subjectMulti-layer perceptron neural networken_US
dc.subjectGeneralized regression neural networken_US
dc.subjectRadial basis function neural networken_US
dc.titlePrediction of geodetic point velocity using MLPNN, GRNN, and RBFNN models: a comparative studyen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridKonakoglu, Berkant/0000-0002-8276-587X
dc.identifier.volume56en_US
dc.identifier.issue2en_US
dc.identifier.startpage271en_US
dc.identifier.endpage291en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85103428552en_US
dc.identifier.doi10.1007/s40328-021-00336-6
dc.department-temp[Konakoglu, Berkant] Amasya Univ, Tech Sci Vocat Sch, Dept Architecture & Urban Planning, TR-05100 Amasya, Turkeyen_US
dc.identifier.wosWOS:000635500500001en_US
dc.authorwosidKonakoglu, Berkant/GQB-2641-2022


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster