dc.contributor.author | Mukhtarov, O. Sh | |
dc.contributor.author | Aydemir, K. | |
dc.date.accessioned | 2024-03-12T19:28:58Z | |
dc.date.available | 2024-03-12T19:28:58Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1575-5460 | |
dc.identifier.issn | 1662-3592 | |
dc.identifier.uri | https://doi.org/10.1007/s12346-022-00598-7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/2131 | |
dc.description.abstract | In this paper, we propose a new type of boundary value problems for 2-interval Sturm-Liouville equations which differs from the classical periodic Sturm-Liouville problems in that, the boundary and transmission conditions depend on a positive parameter alpha > 0. We will call this problem alpha-semi periodic Sturm-Liouville problem. It is important to note that our problem is not self-adjoint in the classical Hilbert space of square-integrable functions L-2[-pi, pi] when the parameter alpha not equal 1. First by using an our own approach we investigated some properties of eigenvalues and their corresponding eigenfunctions. Then, for self-adjoint realization of the problem under consideration we define a different inner product in the classical Hilbert space in which we treated an operator-theoretic formulation. The results obtained generalize and extend similar results of the classical periodic Sturm-Liouville theory, since in the special case alpha = 1 our problem is transformed into classical periodic Sturm-Liouville problems. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Basel Ag | en_US |
dc.relation.ispartof | Qualitative Theory Of Dynamical Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Periodic Sturm-Liouville problems | en_US |
dc.subject | Transmission conditions | en_US |
dc.subject | Eigenvule | en_US |
dc.subject | Eigenfunction | en_US |
dc.title | Spectral Analysis of ?-Semi Periodic 2-Interval Sturm-Liouville Problems | en_US |
dc.type | article | en_US |
dc.department | Amasya Üniversitesi | en_US |
dc.identifier.volume | 21 | en_US |
dc.identifier.issue | 3 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85128941360 | en_US |
dc.identifier.doi | 10.1007/s12346-022-00598-7 | |
dc.department-temp | [Mukhtarov, O. Sh] Gaziosmanpa Univ, Fac Sci, Dept Math, TR-60250 Tokat, Turkey; [Mukhtarov, O. Sh] Azerbaijan Natl Acad Sci, Inst Math & Mech, Baku, Azerbaijan; [Aydemir, K.] Amasya Univ, Fac Art & Sci, Dept Math, TR-05100 Amasya, Turkey | en_US |
dc.identifier.wos | WOS:000788590700001 | en_US |
dc.authorwosid | Aydemir, Kadriye/HGU-2451-2022 | |