Basit öğe kaydını göster

dc.contributor.authorBabacan, Hasan Toerehan
dc.contributor.authorYueksek, Oemer
dc.contributor.authorSaka, Fatih
dc.date.accessioned2024-03-12T19:28:57Z
dc.date.available2024-03-12T19:28:57Z
dc.date.issued2023
dc.identifier.issn1226-7988
dc.identifier.issn1976-3808
dc.identifier.urihttps://doi.org/10.1007/s12205-022-0488-4
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2126
dc.description.abstractIn this study, daily streamflow prediction models have been developed for Aksu Stream, in the Eastern Black Sea Basin of Turkey. To reach at this aim, hybrid artificial intelligence models have been developed, by using a new parameter, vapor pressure. Vapor pressure efficiency has been investigated for hybrid streamflow prediction models. Streamflow prediction models have been developed by using Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS), and their hybrid models. Hybridization of streamflow prediction models has been made with Wavelet Transform (WT). 10 yearly daily hydrological (discharge (m(3)/s)), meteorological (precipitation (mm), vapor pressure (hPA)) data, and seasonality coefficient have been used as input data of streamflow prediction models. In the selection of the best streamflow prediction model, 14 different day-delayed input combinations have been established by using 10 yearly data. As a result of the study, the highest flow forecast performance model has been determined as Wavelet Artificial Neural Network (WANN) in the study area. In the WANN model, the vapor pressure parameter was found to reduce the error by about 18.5% and improve the forecast performance. This study has concluded that, vapor pressure may be used in the future studies as a new parameter for streamflow prediction models.en_US
dc.language.isoengen_US
dc.publisherKorean Society Of Civil Engineers-Ksceen_US
dc.relation.ispartofKsce Journal Of Civil Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectVapor pressureen_US
dc.subjectHeuristic regressionen_US
dc.subjectArtificial intelligenceen_US
dc.subjectStreamflow forecastingen_US
dc.subjectPredictive parameter investigationen_US
dc.titleInvestigation of Impact of Vapor Pressure on Hybrid Streamflow Prediction Modelingen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridBABACAN, Hasan Törehan/0000-0001-9570-1966
dc.identifier.volume27en_US
dc.identifier.issue2en_US
dc.identifier.startpage890en_US
dc.identifier.endpage902en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85144374158en_US
dc.identifier.doi10.1007/s12205-022-0488-4
dc.department-temp[Babacan, Hasan Toerehan] Amasya Univ, Tasova Yuksel Akin Vocat High Sch, TR-05800 Amasya, Turkey; [Yueksek, Oemer] Karadeniz Tech Univ, Dept Civil Engn, TR-61080 Trabzon, Turkey; [Saka, Fatih] Karabuk Univ, Dept Civil Engn, TR-78050 Karabuk, Turkeyen_US
dc.identifier.wosWOS:000901726500003en_US
dc.authorwosidSAKA, Fatih/HTL-3799-2023
dc.authorwosidBABACAN, Hasan Törehan/ACQ-4824-2022


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster