• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new effective hybrid segmentation method based on C-V and LGDF

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Ozturk, Nurullah
Ozturk, Serkan

Üst veri

Tüm öğe kaydını göster

Özet

Image segmentation is a significant research topic in image processing and computer vision. Active contour methods (ACMs) are widely used in image segmentation. In this paper, a new hybrid ACM segmentation model based on Chan-Vese (C-V) and Local Gaussian Distribution Fitting (LGDF) methods is proposed for the images with intensity inhomogeneity. In this model, new gradient descent flow equations are proposed and applied for the energy minimization of C-V and LGDF methods. Firstly, the proposed C-V method is applied to the image to effectively and quickly find the homogeneous regions of the image. Then, the proposed LGDF method is performed in these regions to detect inhomogeneous areas of the image. Thus, more effective and successful segmentation is obtained for inhomogeneous images. Experimental results show that the satisfactory segmentation results have been obtained by the proposed method for MRI and real images. Also, the proposed method is compared with the local binary fitting, LGDF, adaptive local-fitting-based, global and local weighted signed pressure ACMs, and convolutional neural network-based methods.

Cilt

15

Sayı

6

Bağlantı

https://doi.org/10.1007/s11760-021-01862-0
https://hdl.handle.net/20.500.12450/2114

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: