• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ideal solution candidate search for starling murmuration optimizer and its applications on global optimization and engineering problems

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2023

Author

Aydemir, Salih Berkan

Metadata

Show full item record

Abstract

In this article, a novel population selection method, fitness distance balance (FDB), and predictive candidate (PC) solution generation hybridization with starling murmuration optimizer (SMO), FDBPC-SMO are proposed. In FDBPC-SMO algorithm, FDB selects subpopulations instead of the separating search strategy (SSS) in the original SMO. The separating size determined in SMO is given as input to the FDB, and the FDB generates the subpopulation based on the distances among the populations. The least squares strategy is applied to the population obtained at the end of the SMO, and the estimated population candidates are found and replaced with the worst solution candidates from the original population. By adding qualitative analysis, the effectiveness of the FDBPC-SMO has been examined based on the dimension and iteration. The success of FDBPC-SMO is the selection of more efficient candidate solutions from the previous population at each iteration, thus minimizing the possibility of getting stuck in the local optimum. The performance of FDBPC-SMO has been investigated on CEC2017 and CEC2019 test sets and seven engineering application problems. In addition, Wilcoxon and Friedman statistical tests confirm the convergence and fitness results of the proposed method. Accordingly, comparing to conventional and improved methods, it is clear that the convergence ability of FDBPC-SMO is superior.

URI

https://doi.org/10.1007/s11227-023-05618-0
https://hdl.handle.net/20.500.12450/2104

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: