dc.contributor.author | Ogrekci, Suleyman | |
dc.contributor.author | Basci, Yasemin | |
dc.contributor.author | Misir, Adil | |
dc.date.accessioned | 2024-03-12T19:28:48Z | |
dc.date.available | 2024-03-12T19:28:48Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 0170-4214 | |
dc.identifier.issn | 1099-1476 | |
dc.identifier.uri | https://doi.org/10.1002/mma.8988 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/2050 | |
dc.description.abstract | In this paper, we investigate the Hyers-Ulam and Hyers-Ulam-Rassias stability of solutions of a general class of nonlinear Volterra integral equations. By applying a fixed point theorem and modifying a technique widely used in similar problems, we improve some well-known results on this problem. We also provide some examples illustrating the improvement of the results mentioned. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Mathematical Methods In The Applied Sciences | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | fixed point alternative | en_US |
dc.subject | Hyers-Ulam stability | en_US |
dc.subject | Volterra integral equations | en_US |
dc.title | A fixed point method for stability of nonlinear volterra integral equations in the sense of Ulam | en_US |
dc.type | article | en_US |
dc.department | Amasya Üniversitesi | en_US |
dc.authorid | Ogrekci, Suleyman/0000-0003-1205-6848 | |
dc.identifier.volume | 46 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.startpage | 8437 | en_US |
dc.identifier.endpage | 8444 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85145085432 | en_US |
dc.identifier.doi | 10.1002/mma.8988 | |
dc.department-temp | [Ogrekci, Suleyman] Amasya Univ, Fac Arts & Sci, Dept Math, Amasya, Turkey; [Basci, Yasemin] Abant Izzet Baysal Univ, Fac Arts & Sci, Dept Math, Bolu, Turkey; [Misir, Adil] Gazi Univ, Fac Sci, Dept Math, Ankara, Turkey | en_US |
dc.identifier.wos | WOS:000901408300001 | en_US |