• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parametric, response surface, and adjoint optimizations of the underbody diffuser of a generic ground vehicle

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2023

Author

Akar, Mustafa Atakan
Bas, Oguz

Metadata

Show full item record

Abstract

It is a known fact in the literature that diffusers improve vehicle aerodynamics in terms of lift and drag forces. However, their effectiveness and efficiencies are quite sensitive to the design parameters. In this article, the underbody diffuser of a generic ground vehicle, Ahmed body, was optimized via CFD software of Ansys Fluent, step by step with parametric, response surface, and discrete adjoint techniques, respectively. Three numerical models (parametric, response surface, and adjoint models) have been created considering optimum force output for each optimization method, and qualitative and quantitative assessments were made on these models to compare flow characteristics and force coefficients with the base model. As a result, force coefficients are lower by 48.6, 49.3, and 52.8 counts for C-D, 499.6, 547.4, and 528.2 counts for C-L at parametric, response surface, and adjoint optimization phases compared with the base model, respectively. It is observed that diffusers help to improve flow transition and relief underbody and reduce the airflow over the upperbody zone by directing it to the underbody. However, detailed quantitative assessments show that it comes out that the contribution of the underbody to total C-D may increase due to lower pressure distribution diffuser upsweep caused by higher mass flow beneath the model. These results demonstrate the importance of effective utilization and further controlling of underbody flow when using an underbody diffuser.

Volume

95

Issue

9

URI

https://doi.org/10.1002/fld.5198
https://hdl.handle.net/20.500.12450/2039

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: