Basit öğe kaydını göster

dc.contributor.authorOzturk, Saban
dc.contributor.authorCukur, Tolga
dc.date.accessioned2024-03-12T19:28:45Z
dc.date.available2024-03-12T19:28:45Z
dc.date.issued2023
dc.identifier.isbn979-8-3503-4355-7
dc.identifier.issn2165-0608
dc.identifier.urihttps://doi.org/10.1109/SIU59756.2023.10223975
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2024
dc.description31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEYen_US
dc.description.abstractChest X-ray imaging is of critical importance in order to effectively diagnose chest diseases, which are increasing today due to various environmental and hereditary factors. Although chest X-ray is the most commonly used device for detecting pathological abnormalities, it can be quite challenging for specialists due to misleading locations and sizes of pathological abnormalities, visual similarities, and complex backgrounds. Traditional deep learning (DL) architectures fall short due to relatively small areas of pathological abnormalities and similarities between diseased and healthy areas. In addition, DL structures with standard classification approaches are not ideal for dealing with problems involving multiple diseases. In order to overcome the aforementioned problems, firstly, background-independent feature maps were created using a conventional convolutional neural network (CNN). Then, the relationships between objects in the feature maps are made suitable for multi-label classification tasks using the focal modulation network (FMA), an innovative attention module that is more effective than the self-attention approach. Experiments using a Chest x-ray dataset containing both single and multiple labels for a total of 14 different diseases show that the proposed approach can provide superior performance for multi-label datasets.en_US
dc.description.sponsorshipIEEE,TUBITAK BILGEM,Turkcellen_US
dc.language.isoturen_US
dc.publisherIeeeen_US
dc.relation.ispartof2023 31st Signal Processing And Communications Applications Conference, Siuen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectchest x-rayen_US
dc.subjectdeep learningen_US
dc.subjectfocal modulation networksen_US
dc.subjectmulti-label classificationen_US
dc.titleFocal Modulation Based End-to-End Multi-Label Classification for Chest X-ray Image Classificationen_US
dc.typeconferenceObjecten_US
dc.departmentAmasya Üniversitesien_US
dc.authoridÇukur, Tolga/0000-0002-2296-851X
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85173519077en_US
dc.identifier.doi10.1109/SIU59756.2023.10223975
dc.department-temp[Ozturk, Saban; Cukur, Tolga] Bilkent Univ, Elekt & Elekt Muhendisligi Bolumu, Ankara, Turkiye; [Ozturk, Saban] Amasya Univ, Elekt & Elekt Muhendisligi Bolumu, Amasya, Turkiye; [Ozturk, Saban] Bilkent Univ, Ulusal Manyet Rezonans Arastirma Merkezi UMRAM, Ankara, Turkiyeen_US
dc.identifier.wosWOS:001062571000197en_US
dc.authorwosidÇukur, Tolga/Z-5452-2019


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster