Basit öğe kaydını göster

dc.contributor.authorOzturk, Saban
dc.date.accessioned2024-03-12T19:26:48Z
dc.date.available2024-03-12T19:26:48Z
dc.date.issued2021
dc.identifier.issn1877-0509
dc.identifier.urihttps://doi.org/10.1016/j.procs.2021.02.106
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2021
dc.description10th Annual International Conference of Information and Communication Technology (ICICT) -- APR 24-25, 2020 -- Wuhan, PEOPLES R CHINAen_US
dc.description.abstractThis study investigates the suitability of sparse vectors in the dictionary learning (DL) method for content-based image retrieval (CBIR) tasks. Since DL usually performs the learning process in an unsupervised manner, it cannot generate robust features for the retrieval task, especially if a complex background is involved. In order to overcome this drawback, a DL approach using the feature representation power of the convolutional neural network (CNN) is proposed. The initialization values of the dictionaries in the proposed CNN based DL method are taken randomly from the middle layers of the CNN architecture. The vector of each image obtained from the CNN architecture is used as DL input. The lambda vectors produced by the DL structure are converted into binaries. In this way, DL acts as a hash code generator. The performance of the proposed framework is tested on modified COREL dataset. The results prove that it is an open-to-improvement approach and is promising. (C) 2021 The Authors. Published by Elsevier B.V.en_US
dc.description.sponsorshipInterscience Res Network,Int Journal Informat & Commun Technolen_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [120E018]en_US
dc.description.sponsorshipThis research is funded by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant number 120E018.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Bven_US
dc.relation.ispartofProceedings Of The 10th International Conference Of Information And Communication Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCNNen_US
dc.subjectDictionary learningen_US
dc.subjectsparse codingen_US
dc.subjectCBIRen_US
dc.subjecthashingen_US
dc.titleConvolutional neural network based dictionary learning to create hash codes for content-based image retrievalen_US
dc.typeconferenceObjecten_US
dc.departmentAmasya Üniversitesien_US
dc.authoridÖztürk, Şaban/0000-0003-2371-8173
dc.identifier.volume183en_US
dc.identifier.startpage624en_US
dc.identifier.endpage629en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85104895857en_US
dc.identifier.doi10.1016/j.procs.2021.02.106
dc.department-temp[Ozturk, Saban] Amasya Univ, Technol Fac, TR-05001 Amasya, Turkeyen_US
dc.identifier.wosWOS:000665021400085en_US
dc.authorwosidÖztürk, Şaban/ABI-3936-2020


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster