dc.contributor.author | Buyukasik, E. | |
dc.contributor.author | Turkmen, E. | |
dc.date.accessioned | 2019-09-01T13:06:57Z | |
dc.date.available | 2019-09-01T13:06:57Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0041-5995 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/1570 | |
dc.description | WOS: 000301855400010 | en_US |
dc.description.abstract | Zoschinger studied modules whose radicals have supplements and called these modules radical supplemented. Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submodule containing the radical has a supplement. We prove that every (finitely generated) left module is an srs-module if and only if the ring is left (semi) perfect. Over a local Dedekind domain, srs-modules and radical supplemented modules coincide. Over a nonlocal Dedekind domain, an srs-module is the sum of its torsion submodule and the radical submodule. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | SPRINGER | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | STRONGLY RADICAL SUPPLEMENTED MODULES | en_US |
dc.type | article | en_US |
dc.relation.journal | UKRAINIAN MATHEMATICAL JOURNAL | en_US |
dc.identifier.volume | 63 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.startpage | 1306 | en_US |
dc.identifier.endpage | 1313 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department-temp | [Buyukasik, E.] Izmir Inst Technol, Dept Math, Izmir, Turkey -- [Turkmen, E.] Amasya Univ, Dept Math, Fac Art & Sci, Amasya, Turkey | en_US |