Basit öğe kaydını göster

dc.contributor.authorCalisici, Hamza
dc.contributor.authorTurkmen, Ergul
dc.date.accessioned2019-09-01T13:06:55Z
dc.date.available2019-09-01T13:06:55Z
dc.date.issued2012
dc.identifier.issn1072-947X
dc.identifier.urihttps://dx.doi.org/10.1515/gmj-2012-0018
dc.identifier.urihttps://hdl.handle.net/20.500.12450/1565
dc.descriptionWOS: 000307090100002en_US
dc.description.abstractLet R be a ring and M a left R-module. An R-module N is called a cofinite extension of M in case M subset of N and N/M is finitely generated. We say that M has the property (CE) (resp. (CEE)) if M has a supplement (resp. ample supplements) in every cofinite extension. In this study we give various properties of modules with these properties. We show that a module M has the property (CEE) iff every submodule of M has the property (CE). A ring R is semiperfect iff every left R-module has the property (CE). We also study cofinitely injective modules, direct summands of every cofinite extension, as a generalization of injective modules.en_US
dc.language.isoengen_US
dc.publisherHELDERMANN VERLAGen_US
dc.relation.isversionof10.1515/gmj-2012-0018en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSupplementen_US
dc.subjectcofinite extensionen_US
dc.subjectsemiperfect ringen_US
dc.titleModules that have a supplement in every cofinite extensionen_US
dc.typearticleen_US
dc.relation.journalGEORGIAN MATHEMATICAL JOURNALen_US
dc.identifier.volume19en_US
dc.identifier.issue2en_US
dc.identifier.startpage209en_US
dc.identifier.endpage216en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.department-temp[Calisici, Hamza] Ondokuz Mayis Univ, Dept Math, Fac Educ, TR-55139 Kurupelit, Samsun, Turkey -- [Turkmen, Ergul] Amasya Univ, Dept Math, Fac Art & Sci, Ipekkoy, Amasya, Turkeyen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster