dc.contributor.author | Calisici, Hamza | |
dc.contributor.author | Turkmen, Ergul | |
dc.date.accessioned | 2019-09-01T13:06:55Z | |
dc.date.available | 2019-09-01T13:06:55Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1072-947X | |
dc.identifier.uri | https://dx.doi.org/10.1515/gmj-2012-0018 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/1565 | |
dc.description | WOS: 000307090100002 | en_US |
dc.description.abstract | Let R be a ring and M a left R-module. An R-module N is called a cofinite extension of M in case M subset of N and N/M is finitely generated. We say that M has the property (CE) (resp. (CEE)) if M has a supplement (resp. ample supplements) in every cofinite extension. In this study we give various properties of modules with these properties. We show that a module M has the property (CEE) iff every submodule of M has the property (CE). A ring R is semiperfect iff every left R-module has the property (CE). We also study cofinitely injective modules, direct summands of every cofinite extension, as a generalization of injective modules. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | HELDERMANN VERLAG | en_US |
dc.relation.isversionof | 10.1515/gmj-2012-0018 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Supplement | en_US |
dc.subject | cofinite extension | en_US |
dc.subject | semiperfect ring | en_US |
dc.title | Modules that have a supplement in every cofinite extension | en_US |
dc.type | article | en_US |
dc.relation.journal | GEORGIAN MATHEMATICAL JOURNAL | en_US |
dc.identifier.volume | 19 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 209 | en_US |
dc.identifier.endpage | 216 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department-temp | [Calisici, Hamza] Ondokuz Mayis Univ, Dept Math, Fac Educ, TR-55139 Kurupelit, Samsun, Turkey -- [Turkmen, Ergul] Amasya Univ, Dept Math, Fac Art & Sci, Ipekkoy, Amasya, Turkey | en_US |