• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental and Theoretical Study on the Electrochemical Behavior of Zofenopril and its Voltammetric Determination

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2012

Author

Tasdemir, Ibrahim Hudai
Ece, Abdulilah
Kilic, Esma

Metadata

Show full item record

Abstract

Electrochemical behavior of zofenopril (ZOF) was studied via experimental electrochemical methods and theoretical calculations performed at B3LYP/6-31+G(d)//AM1 level. Optimum conditions for quantitative determination were investigated by several electrochemical methods such as cyclic voltammetry, square-wave voltammetry and bulk electrolysis. Electrochemical parameters like charge transfer, diffusion and surface coverage coefficients of adsorbed molecules and also number of electrons transferred in electrode mechanisms were calculated. All studies were based on the irreversible and adsorption-controlled electrochemical oxidation signal of ZOF at about 1.1 V versus Ag/AgCl at pH 5.0 in Britton-Robinson buffer (BR). This adsorptive character of ZOF was used to develop fully validated, new, rapid, selective and simple voltammetric methods for the direct determination of the molecule in pharmaceutical dosage forms and biological samples without time-consuming steps prior to drug analysis. Peak current of electrochemical oxidation of ZOF was found to change linearly with the concentration in the range from 2.0 x 10(-6) molL(-1) (0.86 mgL(-1)) to 1.0 x 10(-4) molL(-1) (42.9 mgL(-1)) in direct voltammetric methods and found to change linearly with the concentration in the range from 2.0 x 10(-8) molL(-1) (8.59 x mu L-1) to 1.0 x 10(-6) molL(-1) (0.43 mgL(-1)) in adsorptive stripping voltammetric methods. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 1.17 x 10(-8) molL(-1) (5.03 mu gL(-1)) and 3.89 x 10(-8) molL(-1) (16.8 mu gL(-1)) respectively in anodic adsorptive stripping voltammetry. The methods were successfully applied to assay the drug in tablets, human serum and human urine with good recoveries (between 95.0% and 104.6%) and relative standard deviation less than 10%.

Source

CURRENT PHARMACEUTICAL ANALYSIS

Volume

8

Issue

4

URI

https://dx.doi.org/10.2174/157341212803341627
https://hdl.handle.net/20.500.12450/1536

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: