• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

pH-responsive nanofibers with controlled drug release properties

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2014

Author

Demirci, Serkan
Celebioglu, Asli
Aytac, Zeynep
Uyar, Tamer

Metadata

Show full item record

Abstract

Smart polymers and nanofibers are potentially intriguing materials for controlled release of bioactive agents. This work describes a new class of pH responsive nanofibers for drug delivery systems with controlled release properties. Initially, poly(4-vinylbenzoic acid-co-(ar-vinylbenzyl) trimethylammonium chloride) [poly(VBA-co-VBTAC)] was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Then, ciprofloxacin was chosen as the model drug for the release study and encapsulated into pH-responsive polymeric carriers of poly(VBA-co-VBTAC) nanofibers via electrospinning. The morphology of the electrospun nanofibers was examined by scanning electron microscopy (SEM). The structural characteristics of the pH responsive nanofibers were investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The release measurements of ciprofloxacin from pH responsive nanofibers were also performed by high-performance liquid chromatography (HPLC) analysis. To show the pH sensitivity of these nanofibers, the release profile of ciprofloxacin was examined under acidic, neutral and basic conditions. The results indicate that pH responsive nanofibers can serve as effective drug carriers since the release of ciprofloxacin could be controlled by changing the pH of the environment, and therefore these drug loaded pH-responsive nanofibers might have potential applications in the biomedical field.

Source

POLYMER CHEMISTRY

Volume

5

Issue

6

URI

https://dx.doi.org/10.1039/c3py01276j
https://hdl.handle.net/20.500.12450/1471

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: