Basit öğe kaydını göster

dc.contributor.authorErgul, Engin Ufuk
dc.contributor.authorEminoglu, Ilyas
dc.date.accessioned2019-09-01T13:06:15Z
dc.date.available2019-09-01T13:06:15Z
dc.date.issued2014
dc.identifier.issn0020-7721
dc.identifier.issn1464-5319
dc.identifier.urihttps://dx.doi.org/10.1080/00207721.2012.724095
dc.identifier.urihttps://hdl.handle.net/20.500.12450/1443
dc.descriptionWOS: 000324683200033en_US
dc.description.abstractIn this article, a new fitness assignment scheme to evaluate the Pareto-optimal solutions for multi-objective evolutionary algorithms is proposed. The proposed DOmination Power of an individual Genetic Algorithm (DOPGA) method can order the individuals in a form in which each individual (the so-called solution) could have a unique rank. With this new method, a multi-objective problem can be treated as if it were a single-objective problem without drastically deviating from the Pareto definition. In DOPGA, relative position of a solution is embedded into the fitness assignment procedures. We compare the performance of the algorithm with two benchmark evolutionary algorithms (Strength Pareto Evolutionary Algorithm (SPEA) and Strength Pareto Evolutionary Algorithm 2 (SPEA2)) on 12 unconstrained bi-objective and one tri-objective test problems. DOPGA significantly outperforms SPEA on all test problems. DOPGA performs better than SPEA2 in terms of convergence metric on all test problems. Also, Pareto-optimal solutions found by DOPGA spread better than SPEA2 on eight of 13 test problems.en_US
dc.description.sponsorshipOndokuz Mayis University [BAP-MF-119]en_US
dc.description.sponsorshipThe authors gratefully acknowledge the financial support provided by Ondokuz Mayis University under the contract of BAP-MF-119 project. They also acknowledge the critical comments made by anonymous reviewers, which have significantly improved the readability and the exposition of this article.en_US
dc.language.isoengen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.relation.isversionof10.1080/00207721.2012.724095en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfitness assignmenten_US
dc.subjectdomination poweren_US
dc.subjectDOPGAen_US
dc.subjectevolutionary algorithmsen_US
dc.subjectSPEA and SPEA2en_US
dc.subjecttest functionsen_US
dc.titleDOPGA: a new fitness assignment scheme for multi-objective evolutionary algorithmsen_US
dc.typearticleen_US
dc.relation.journalINTERNATIONAL JOURNAL OF SYSTEMS SCIENCEen_US
dc.identifier.volume45en_US
dc.identifier.issue3en_US
dc.identifier.startpage407en_US
dc.identifier.endpage426en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.department-temp[Ergul, Engin Ufuk] Amasya Univ, Dept Elect & Elect Engn, Fac Technol, TR-05100 Amasya, Turkey -- [Eminoglu, Ilyas] Ondokuz Mayis Univ, Dept Elect & Elect Engn, Fac Engn, TR-55189 Samsun, Turkeyen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster