Oscillation of fractional order functional differential equations with nonlinear damping
Özet
In this paper, we are concerned with the oscillatory behavior of a class of fractional differential equations with functional terms. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. Based on a certain variable transformation, by using a generalized Riccati transformation, generalized Philos type kernels, and averaging techniques we establish new interval oscillation criteria. Illustrative examples are also given.