dc.contributor.author | Ogrekci, Suleyman | |
dc.date.accessioned | 2019-09-01T13:05:51Z | |
dc.date.available | 2019-09-01T13:05:51Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.uri | https://dx.doi.org/10.1186/s13662-014-0336-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/1360 | |
dc.description | WOS: 000351300200002 | en_US |
dc.description.abstract | In this paper, we are concerned with the oscillatory behavior of a class of fractional differential equations with functional terms. The fractional derivative is defined in the sense of themodified Riemann-Liouville derivative. By using a variable transformation, a generalized Riccati transformation, Philos type kernels, and the averaging technique, we establish new interval oscillation criteria. Illustrative examples are also given. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | SPRINGEROPEN | en_US |
dc.relation.isversionof | 10.1186/s13662-014-0336-z | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | fractional ODE | en_US |
dc.subject | oscillation | en_US |
dc.subject | functional term | en_US |
dc.title | Interval oscillation criteria for functional differential equations of fractional order | en_US |
dc.type | article | en_US |
dc.relation.journal | ADVANCES IN DIFFERENCE EQUATIONS | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department-temp | Amasya Univ, Dept Math, Sci & Arts Fac, Ipekkoy, Amasya, Turkey | en_US |