dc.contributor.author | Turkmen, Burcu Nisanci | |
dc.date.accessioned | 2019-09-01T13:05:20Z | |
dc.date.available | 2019-09-01T13:05:20Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0350-1302 | |
dc.identifier.uri | https://dx.doi.org/10.2298/PIM141215014T | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/1241 | |
dc.description | WOS: 000398277700024 | en_US |
dc.description.abstract | As a proper generalization of injective modules in term of supplements, we say that a module M has the property (SE) (respectively, the property (SSE)) if, whenever M subset of N, M has a supplement that is a direct summand of N (respectively, a strong supplement in N). We show that a ring R is a left and right artinian serial ring with Rad(R)(2) = 0 if and only if every left R-module has the property (SSE). We prove that a commutative ring R is an artinian serial ring if and only if every left R-module has the property (SE). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | PUBLICATIONS L INSTITUT MATHEMATIQUE MATEMATICKI | en_US |
dc.relation.isversionof | 10.2298/PIM141215014T | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | supplement | en_US |
dc.subject | module with the properties (SE) and (SSE) | en_US |
dc.subject | artinian serial ring | en_US |
dc.title | ON GENERALIZATIONS OF INJECTIVE MODULES | en_US |
dc.type | article | en_US |
dc.relation.journal | PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | en_US |
dc.identifier.volume | 99 | en_US |
dc.identifier.issue | 113 | en_US |
dc.identifier.startpage | 249 | en_US |
dc.identifier.endpage | 255 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department-temp | [Turkmen, Burcu Nisanci] Amasya Univ, Fac Art & Sci, Amasya, Turkey | en_US |